SOLUTIONS TO PSET 9

Problem 1. (5 points each)

1. $B=M^{-1} A M$ and $C=N^{-1} B N$ imply $C=N^{-1} M^{-1} A M N=(M N)^{-1} A(M N)$. If B is similar to A and C is similar to B, then A is similar to C.
2. $F^{-1} A F=C=G^{-1} B G$, so $B=G F^{-1} A F G^{-1}=\left(F G^{-1}\right)^{-1} A\left(F G^{-1}\right)$. If C is similar to A and also to B, then A and B are similar.

Problem 2. Let M be a 4×4 matrix. Then $J M=\left(\begin{array}{cccc}m_{21} & m_{22} & m_{32} & m_{42} \\ 0 & 0 & 0 & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0\end{array}\right)$ while $M K=\left(\begin{array}{llll}0 & m_{11} & m_{12} & 0 \\ 0 & m_{21} & m_{22} & 0 \\ 0 & m_{31} & m_{32} & 0 \\ 0 & m_{41} & m_{42} & 0\end{array}\right)$. If $J M=M K$, then we conclude from comparing these two matrices that $m_{11}=m_{22}=0$, and $m_{21}=0$, and $m_{31}=m_{42}=0$, and $m_{41}=0$. Thus $\operatorname{det}(M)=$ 0 and M is not invertible as required.

Problem 3. (2.5 points each)
a) True. If $A=M B M^{-1}$ with B invertible, then $\operatorname{det}(A)=\operatorname{det}(M) \operatorname{det}(B) \operatorname{det}\left(M^{-1}\right)=$ $\operatorname{det}(B) \neq 0$.
b) False. $\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right)\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)=\left(\begin{array}{ll}10 & -3 \\ 15 & -5\end{array}\right)$.
c) False. We know (problem 13) that A and A^{t} are similar. So just choose a nonzero skew-symmetric matrix.
d) True. If A is similar to $A+I$, then $\operatorname{tr}(A)=\operatorname{tr}(A+I)=\operatorname{tr}(a)+n$, which is impossible.

Problem 4. We have that $\left\{\mathbf{v}_{i}\right\}$ and $\left\{\mathbf{u}_{i}\right\}$ are orthonormal bases in \mathbb{R}^{n}. We want A such that $A \mathbf{v}_{i}=\mathbf{u}_{i}$. If we let V be the matrix whose columns are the \mathbf{v}_{i}, and U the matrix whose columns are the \mathbf{u}_{i}, then what we are asking for is $A V=U$, or, equivalently, $A=U V^{t}$.

Problem 5. Here, we suppose that the $m \times n$ matrix A has orthogonal columns, labelled $\left\{\mathbf{w}_{i}\right\}$, with lengths $\left\{\sigma_{i}\right\}$. This tells us that $A^{t} A=\Lambda$, where Λ is the diagonal matrix with eigenvalues σ_{i}^{2}. Thus $V=I$. So the SVD reads $A=U \Sigma$. So we can let Σ be the $m \times n$ matrix whose first n diagonal elements are the σ_{i} and all of whose other elements are 0 (note that $m \geq n$ because the columns of A are orthogonal, hence independent), and we can let U be the orthogonal $m \times m$ matrix whose first n columns are $\left(1 / \sigma_{i}\right) \mathbf{w}_{i}$, and the rest of whose columns form an orthonormal basis for the left nullspace of A.

Problem 6. (5 points each)

1. We have $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ given by $T(M)=A M$. Then $T\left(M_{1}+M_{2}\right)=A\left(M_{1}+\right.$ $\left.M_{2}\right)=A M_{1}+A M_{2}=T\left(M_{1}\right)+T\left(M_{2}\right) . T(\lambda M)=A(\lambda M)=\lambda(A M)=\lambda T(M)$; so T is linear.
2. Suppose $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right)$. Then $\operatorname{det}(A)=-1$, so A is invertible. Now, $T(M)=A M=0$ implies $0=A^{-1}(A M)=M$. Further, given $B, T\left(A^{-1} B\right)=A\left(A^{-1} B\right)=B$.

Problem 7. (2 points for 15, 2 each for 17)

1. Now put $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)$. Then $\operatorname{det}(A)=0$, so A is not invertible. Thus $T(M)=A M=I$ is impossible. Further, $\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)\left(\begin{array}{cc}-2 & -2 \\ 1 & 1\end{array}\right)=0$.
2. a) True. $T^{2}(A)=T T(A)=T\left(A^{t}\right)=\left(A^{t}\right)^{t}=A$.
b) True. T is invertible (it is its own inverse, by part a), $\operatorname{so} \operatorname{Ker}(T)=0$.
c) True. For any $B, B=T\left(B^{t}\right)$.
d) False. This is just the skew-symmetry condition.

Problem 8. Clearly we have $B=\left(\begin{array}{cccc}0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ as $S(1)=0, S(x)=0, S\left(x^{2}\right)=2$, $S\left(x^{3}\right)=6 x$.

Problem 9. (5 points each)
1.The matrix for T is $\left(\begin{array}{ccc}T v_{1} & T v_{2} & T v_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$. Further, $T\left(v_{1}-v_{2}\right)=w_{1}+$ $w_{2}+w_{3}-\left(w_{2}+w_{3}\right)=w_{1}$.
2. Well, $T^{-1}\left(w_{3}\right)=v_{3}$ clearly. Next, $T^{-1}\left(w_{2}+w_{3}\right)=v_{2}$, so $T^{-1}\left(w_{2}\right)=v_{2}-v_{3}$. Finally, $v_{1}=T^{-1}\left(w_{1}+w_{2}+w_{3}\right)=T^{-1}\left(w_{1}\right)+v_{2}-v_{3}+v_{3}=T^{-1}\left(w_{1}\right)+v_{2}$, so $T^{-1}\left(w_{1}\right)=v_{1}-v_{2}$. Thus $A^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right) . T \mathbf{v}=0$ only happens when $\mathbf{v}=0$, because T is invertible.

Problem 10. We have $A=Q R$. Now, any invertible matrix B can be interpreted as the c.o.b. matrix from the basis which constits of columns of B to the standard basis (this is his defintion of c.o.b. matrix in the text). Thus, A is the c.o.b. matrix from the basis $\left\{a_{1}, a_{2}, a_{3}\right\}$ to the standard basis and Q is the c.o.b. from the basis $\left\{q_{1}, q_{2}, q_{3}\right\}$ to the standard basis. So Q^{-1} is the c.o.b. matrix from the standard basis to the basis $\left\{q_{1}, q_{2}, q_{3}\right\}$. So $R=Q^{-1} a$ is the c.o.b. matrix from the basis $\left\{a_{1}, a_{2}, a_{3}\right\}$ to the basis $\left\{q_{1}, q_{2}, q_{3}\right\}$.

