SOLUTIONS TO PSET 9

Problem 1. (5 points each)

1. $B = M^{-1}AM$ and $C = N^{-1}BN$ imply $C = N^{-1}M^{-1}AMN = (MN)^{-1}A(MN)$. If B is similar to A and C is similar to B, then A is similar to C.

2. $F^{-1}AF = C = G^{-1}BG$, so $B = GF^{-1}AFG^{-1} = (FG^{-1})^{-1}A(FG^{-1})$. If C is similar to A and also to B, then A and B are similar.

Problem 2. Let *M* be a 4 × 4 matrix. Then $JM = \begin{pmatrix} m_{21} & m_{22} & m_{32} & m_{42} \\ 0 & 0 & 0 & 0 \\ m_{41} & m_{42} & m_{43} & m_{44} \\ 0 & 0 & 0 & 0 \end{pmatrix}$ while

 $MK = \begin{pmatrix} 0 & m_{11} & m_{12} & 0 \\ 0 & m_{21} & m_{22} & 0 \\ 0 & m_{31} & m_{32} & 0 \\ 0 & m_{41} & m_{42} & 0 \end{pmatrix}.$ If JM = MK, then we conclude from comparing these two

matrices that $m_{11} = m_{22} = 0$, and $m_{21} = 0$, and $m_{31} = m_{42} = 0$, and $m_{41} = 0$. Thus det(M) = 0 and M is not invertible as required.

Problem 3. (2.5 points each)

a) True. If $A = MBM^{-1}$ with B invertible, then $det(A) = det(M)det(B)det(M^{-1}) = det(B) \neq 0$.

b) False. $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 10 & -3 \\ 15 & -5 \end{pmatrix}$.

c) False. We know (problem 13) that A and A^t are similar. So just choose a nonzero skew-symmetric matrix.

d) True. If *A* is similar to A + I, then tr(A) = tr(A + I) = tr(a) + n, which is impossible. **Problem 4.** We have that $\{\mathbf{v}_i\}$ and $\{\mathbf{u}_i\}$ are orthonormal bases in \mathbb{R}^n . We want *A* such that $A\mathbf{v}_i = \mathbf{u}_i$. If we let *V* be the matrix whose columns are the \mathbf{v}_i , and *U* the matrix whose columns are the \mathbf{u}_i , then what we are asking for is AV = U, or, equivalently, $A = UV^t$.

Problem 5. Here, we suppose that the $m \times n$ matrix A has orthogonal columns, labelled $\{\mathbf{w}_i\}$, with lengths $\{\sigma_i\}$. This tells us that $A^tA = \Lambda$, where Λ is the diagonal matrix with eigenvalues σ_i^2 . Thus V = I. So the SVD reads $A = U\Sigma$. So we can let Σ be the $m \times n$ matrix whose first n diagonal elements are the σ_i and all of whose other elements are 0 (note that $m \ge n$ because the columns of A are orthogonal, hence independent), and we can let U be the orthogonal $m \times m$ matrix whose first n columns are $(1/\sigma_i)\mathbf{w}_i$, and the rest of whose columns form an orthonormal basis for the left nullspace of A.

Problem 6. (5 points each)

1. We have $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by T(M) = AM. Then $T(M_1 + M_2) = A(M_1 + M_2) = AM_1 + AM_2 = T(M_1) + T(M_2)$. $T(\lambda M) = A(\lambda M) = \lambda(AM) = \lambda T(M)$; so T is linear.

2. Suppose $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$. Then det(A) = -1, so A is invertible. Now, T(M) = AM = 0implies $0 = A^{-1}(AM) = M$. Further, given B, $T(A^{-1}B) = A(A^{-1}B) = B$.

Problem 7. (2 points for 15, 2 each for 17)

SOLUTIONS TO PSET 9

1. Now put $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Then det(A) = 0, so A is not invertible. Thus T(M) = AM = Iis impossible. Further, $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} -2 & -2 \\ 1 & 1 \end{pmatrix} = 0.$ 2. a) True. $T^{2}(A) = TT(A) = T(A^{t}) = (A^{t})^{t} = A$.

b) True. T is invertible (it is its own inverse, by part a), so Ker(T) = 0.

c) True. For any $B, B = T(B^t)$.

d) False. This is just the skew-symmetry condition.

Problem 8. Clearly we have
$$B = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 as $S(1) = 0$, $S(x) = 0$, $S(x^2) = 2$,

 $S(x^3) = 6x.$

Problem 9. (5 points each)

1. The matrix for T is $(Tv_1 \ Tv_2 \ Tv_3) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Further, $T(v_1 - v_2) = w_1 + v_3 = (1 + 1) + ($

 $w_2 + w_3 - (w_2 + w_3) = w_1.$

 $w_{2} + w_{3} - (w_{2} + w_{3}) = w_{1}.$ 2. Well, $T^{-1}(w_{3}) = v_{3}$ clearly. Next, $T^{-1}(w_{2} + w_{3}) = v_{2}$, so $T^{-1}(w_{2}) = v_{2} - v_{3}$. Finally, $v_{1} = T^{-1}(w_{1} + w_{2} + w_{3}) = T^{-1}(w_{1}) + v_{2} - v_{3} + v_{3} = T^{-1}(w_{1}) + v_{2}$, so $T^{-1}(w_{1}) = v_{1} - v_{2}$. Thus $A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. $T\mathbf{v} = 0$ only happens when $\mathbf{v} = 0$, because T is invertible.

Problem 10. We have A = QR. Now, any invertible matrix B can be interpreted as the c.o.b. matrix from the basis which constits of columns of B to the standard basis (this is his definition of c.o.b. matrix in the text). Thus, A is the c.o.b. matrix from the basis $\{a_1, a_2, a_3\}$ to the standard basis and Q is the c.o.b. from the basis $\{q_1, q_2, q_3\}$ to the standard basis. So Q^{-1} is the c.o.b. matrix from the standard basis to the basis $\{q_1, q_2, q_3\}$. So $R = Q^{-1}a$ is the c.o.b. matrix from the basis $\{a_1, a_2, a_3\}$ to the basis $\{q_1, q_2, q_3\}$.