SOLUTIONS TO PSET 8

Problem 1. (5 points each)

1. We carry out the three steps on page 306. Firstly the eigenvalues of $\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$ are clearly 4 and 1 . Thus, the eigenvectors can be found by solving $\left(\begin{array}{cc}0 & 3 \\ 0 & -3\end{array}\right)\binom{x_{1}}{x_{2}}=0$ and $\left(\begin{array}{ll}3 & 3 \\ 0 & 0\end{array}\right)\binom{y_{1}}{y_{2}}=0$, yielding $\binom{1}{0}$ and $\binom{1}{-1}$. Now, $\mathbf{u}(0)=\binom{5}{-2}=3\binom{1}{0}+2\binom{1}{-1}$. Thus our solution is $\mathbf{u}(t)=3 \mathbf{e}^{4 t}\binom{1}{0}+2 \mathbf{e}^{t}\binom{1}{-1}$.
2. The general solution to $z^{\prime}=z$ is $z=c \mathbf{e}^{t}$, so $z(0)=-2$ implies that $c=-2$. So we now solve $y^{\prime}=4 y-6 \mathbf{e}^{t}$. The reader can verify that $3 \mathbf{e}^{4 t}+2 \mathbf{e}^{t}$ works.

Problem 2. (5 points each)
a) $2 u_{1} u_{1}^{\prime}+2 u_{2} u_{2}^{\prime}+2 u_{3} u_{3}^{\prime}=2\left[u_{1}\left(c u_{2}-b u_{3}\right)+u_{2}\left(a u_{3}-c u_{1}\right)+u_{3}\left(b u_{1}-a u_{2}\right)\right]=0$. So $\|\mathbf{u}(t)\|^{2}$ has derivative identically zero, and hence is a constant function.
b) Suppose $A^{t}=-A$, and let $Q=\mathbf{e}^{A t}$. Then $Q^{t}=\left(\mathbf{e}^{A t}\right)^{t}=\left(1+A t+A^{2} t / 2+\ldots\right)^{t}=$ $\left(1+A^{t} t+\left(A^{t}\right)^{2} t^{2} / 2+\ldots\right)=\left(1+(-A) t+(-A)^{2} t^{2} / 2+\ldots\right)=\mathbf{e}^{-A t}$. Thus $Q^{t}=Q^{-1}$ as required.

Problem 3. (5 points each)
a) $\left(\mathbf{e}^{A t}\right)^{-1}=\mathbf{e}^{-A t}$ since $\mathbf{e}^{A t} \mathbf{e}^{-A t}=\mathbf{e}^{A t-A t}=I$.
b) Suppose $A \mathbf{x}=\lambda \mathbf{x}$. Then $\mathbf{e}^{A t} \mathbf{x}=\left(1+A t+A^{2} t^{2} / 2+\ldots\right) \mathbf{x}=\mathbf{x}+\lambda t \mathbf{x}+\left(\lambda^{2} t^{2} / 2\right) \mathbf{x}+\ldots=$ $\left(1+\lambda t+(\lambda t)^{2} / 2+\ldots\right) \mathbf{x}=\mathbf{e}^{\lambda t} \mathbf{x}$. Further, $\mathbf{e}^{\lambda t}$ is never zero because \mathbf{e}^{y} is never zero, for any y. Finally, since $\operatorname{det}\left(\mathbf{e}^{A t}\right)$ is the product of the eigenvalues, this implies that $\mathbf{e}^{A t}$ is invertible.

Problem 4. (2.5 points each)
a) False. Consider $A=\left(\begin{array}{ll}1 & 7 \\ 0 & 2\end{array}\right)$.
b) True, if one reads the question to mean that A has distinct eigenvectors (if you don't assume this, take $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ as a counterexample). If we do assume this, we can write $A=S \Lambda S^{-1}$ where Λ is diagonal (the matrix of eigenvalues) and S is the matrix of eigenvectors. Since the eigenvectors are orthogonal, we can scale S to be an orthonormal matrix (eigenvalues aren't affected by scaling). Then $S^{-1}=S^{t}$ and so $A^{t}=\left(S^{t}\right)^{-1} \Lambda S^{t}=S \Lambda S^{-1}=$ A.
c) True. Let $A^{t}=A$, and let $B=A^{-1}$ so that $A B=B A=I$. Then transposing these equations gives $I=B^{t} A^{t}=B^{t} A$ and $I=A^{t} B^{t}=A B^{t}$, thus $B^{t}=A^{-1}$ as well, so $B^{t}=B$.
d) False.

Problem 5. Well, $\operatorname{det}\left(\begin{array}{cc}2-\lambda & b \\ 1 & -\lambda\end{array}\right)=-(\lambda)(2-\lambda)-b=\lambda^{2}-2 \lambda-b$, so the eigenvalues are $1+\sqrt{1+b}$ and $1-\sqrt{1+b}$ by the quadratic formula. The eigenvectors therefore are the solutions to $\left(\begin{array}{cc}1-\sqrt{1+b} & b \\ 1 & -1-\sqrt{1+b}\end{array}\right)\binom{x_{1}}{x_{2}}=0$ and $\left(\begin{array}{cc}1+\sqrt{1+b} & b \\ 1 & -1+\sqrt{1+b}\end{array}\right)\binom{y_{1}}{y_{2}}=$ 0 , which are $\binom{1+\sqrt{1+b}}{1}$ and $\binom{1-\sqrt{1+b}}{1}$, respectively. These vectors are orthogonal
when $b=1$, this makes $A=Q \Lambda Q^{t}$ possible. When $b=-1$, the two eigenvectors become equal, and then the $S \Lambda S^{-1}$ factorization is impossible. As $\operatorname{det}(A)=-b$, setting $b=0$ makes inverting A impossible.

Problem 6. (5 points each)
a) $\left(A^{H} A\right)^{H}=A^{H}\left(A^{H}\right)^{H}=A^{H} A$, so $A^{H} A$ is hermetian.
b) $A^{H} A \mathbf{z}=0$ implies that $0=\mathbf{z}^{H} A^{H} A \mathbf{z}=(A \mathbf{z})^{H} A \mathbf{z}=\|A \mathbf{z}\|^{2}$; thus $A \mathbf{z}=0$. So $N(A)=$ $N\left(A^{H} A\right)$, and $A^{H} A$ is invertible iff $N(A)=0$.

Problem 7. (5 points)

1. Well, U is unitary implies $U^{-1}=U^{H}$, so $\left(U^{-1}\right)^{H}=\left(U^{H}\right)^{-1}=\left(U^{-1}\right)^{-1}=U$, so U^{-1} is also unitary. Further $(U V)^{H} U V=V^{H} U^{H} U V=V^{H} V=I$, so $U V$ is unitary.
2. Well, we know that for any complex matrix $A, \operatorname{det}\left(A^{H}\right)=\operatorname{det}\left(\bar{A}^{t}\right)=\operatorname{det}\left(A^{t}\right)=$ $\operatorname{det}(A)$. Now, if A is hermetian, $A^{H}=A$ implies $\operatorname{det}\left(A^{H}\right)=\operatorname{det}(A)$, so $\operatorname{det}(A)=\operatorname{det}(A)$, and $\operatorname{det}(A)$ is real.

Problem 8. The eigenvalues are the roots of $\operatorname{det}\left(\begin{array}{cc}2-\lambda & 1-i \\ 1+i & 3-\lambda\end{array}\right)=(3-\lambda)(2-\lambda)-$ $2=\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1)$, so 4 and 1 fit the bill. The eigenvectors are the solutions to $\left(\begin{array}{cc}-2 & 1-i \\ 1+i & -1\end{array}\right)\binom{x_{1}}{x_{2}}=0$ and $\left(\begin{array}{cc}1 & 1-i \\ 1+i & 2\end{array}\right)\binom{y_{1}}{y_{2}}=0$, which are $\binom{1}{1+i}$ and $\binom{-1+i}{1}$ repectively. Thus the diagonalization is $A=\left(\begin{array}{cc}1 & -1+i \\ 1+i & 1\end{array}\right)\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 / 3 & (1-i) / 3 \\ (-1-i) / 3 & 1 / 3\end{array}\right)$.

Problem 9. (5 points each)

1. We have $F_{4}=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & i \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -i\end{array}\right)\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. The inverse of the third factor is itself, as it is a symmetric permutation matrix. The second factor can be inverted by inverting each of its constituent 2×2 matrices, and the first factor can be inverted by inspection to get: $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 2 & -1 / 2 & 0 & 0 \\ 0 & 0 & 1 / 2 & 1 / 2 \\ 0 & 0 & 1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{cccc}1 / 2 & 0 & 1 / 2 & 0 \\ 0 & 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 & 0 \\ 0 & 1 / 2 i & 0 & -1 / 2 i\end{array}\right)$.
2. Transposing the equation gives: $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & i & 0 & -i\end{array}\right)$.
