SOLUTIONS TO PSET 7

1. (5 points each)
2. $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 2 \\ 2 & 3-\lambda\end{array}\right)=(-\lambda)(3-\lambda)-4=\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+$ 1); so the eigenvalues are 4 and -1 . So, to get the eigenvector corresponding to 4 , we solve $\left(\begin{array}{cc}-4 & 2 \\ 2 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=0$ and arrive at $\binom{1}{2}$. For the -1 eigenvector, we solve $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)\binom{x_{1}}{x_{2}}=0$ and get $\binom{-2}{1}$.

Next, $\operatorname{det}\left(A^{-1}-\lambda I\right)=\operatorname{det}\left(\begin{array}{cc}-3 / 4-\lambda & 1 / 2 \\ 1 / 2 & -\lambda\end{array}\right)=(-\lambda)(-3 / 4-\lambda)-1 / 4=\lambda^{2}+(3 / 4) \lambda-$ $1 / 4=(\lambda+1)(\lambda-1 / 4)$; so we get -1 and $1 / 4$, the inverses of the above. The eigenvectors have to be the same, because if we have $A \mathbf{x}=\lambda \mathbf{x}$, then we can apply A^{-1} to both sides to get $\mathbf{x}=\lambda A^{-1} \mathbf{x}$, and then $\lambda^{-1} \mathbf{x}=A^{-1} \mathbf{x}$.
2. $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-1-\lambda & 3 \\ 2 & -\lambda\end{array}\right)=(-\lambda)(-1-\lambda)-6=\lambda^{2}+\lambda-6=(\lambda+$ $3)(\lambda-2)$, and so -3 and 2 are the eigenvalues. To find the eigenvectors, solve $\left(\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right)\binom{x_{1}}{x_{2}}=$ 0 and $\left(\begin{array}{cc}-3 & 3 \\ 2 & -2\end{array}\right)\binom{y_{1}}{y_{2}}=0$ to get $\binom{x_{1}}{x_{2}}=\binom{3}{-2}$ and $\binom{y_{1}}{y_{2}}=\binom{1}{1}$. To find the eigenvalues of A^{2}, solve $\operatorname{det}\left(A^{2}-\lambda I\right)=\operatorname{det}\left(\left(\begin{array}{cc}7-\lambda & -3 \\ -2 & 6-\lambda\end{array}\right)=(7-\lambda)(6-\lambda)-6=\lambda^{2}-\right.$ $13 \lambda+36=(\lambda-9)(\lambda-4)$ so $\lambda=9$ and $\lambda=4$ work. The eigenvectors are the same, because $A^{2} \mathbf{x}=A(A \mathbf{x})=A(\lambda \mathbf{x})=\lambda A \mathbf{x}=\lambda^{2} \mathbf{x}$.
2. Well, we have that $\operatorname{det}(A-\lambda I)=\operatorname{det}(A-\lambda I)^{t}=\operatorname{det}\left(A^{t}-(\lambda I)^{t}\right)=\operatorname{det}\left(A^{t}-\lambda I\right)$. Thus the roots of these two polynomials are equal. However, if $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 7\end{array}\right)$, then A has $\binom{1}{0}$ as an eigenvalue, while $A^{t}=\left(\begin{array}{ll}1 & 0 \\ 1 & 7\end{array}\right)$ has $\binom{0}{1}$, and one can easily check that each of these is not an eigenvalue of the other.
3. $(3,3$ and 4 points)
a)Well, $A=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right)$ fits the bill. The eigenvalues are found by $\operatorname{det}\left(\begin{array}{cc}1 / 2-\lambda & 1 / 2 \\ 1 & -\lambda\end{array}\right)=$ $(-\lambda)(1 / 2-\lambda)-1 / 2=\lambda^{2}-\lambda / 2-1 / 2=(\lambda-1)(\lambda+1 / 2)$, so we get $\lambda_{1}=1$ and $\lambda_{2}=$ $-1 / 2$. To find the eigenvectors, we solve $\left(\begin{array}{cc}-1 / 2 & 1 / 2 \\ 1 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=0$, yielding $\binom{1}{1}$, and $\left(\begin{array}{ll}1 & 1 / 2 \\ 1 & 1 / 2\end{array}\right)\binom{x_{1}}{x_{2}}=0$, yielding $\binom{1}{-2}$.
b) Therefore, $S=\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)$, and $\Lambda=\left(\begin{array}{cc}1 & 0 \\ 0 & -1 / 2\end{array}\right)$. So $\Lambda^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & -(1 / 2)^{n}\end{array}\right)$, and thus $\lim _{n \rightarrow \infty} \Lambda^{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, and so $\lim _{n \rightarrow \infty} A^{n}=\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}-2 & -1 \\ -1 & 1\end{array}\right)(-1 / 3)=$ $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}-2 & -1 \\ -1 & 1\end{array}\right)(-1 / 3)=\left(\begin{array}{ll}-2 & -1 \\ -2 & -1\end{array}\right)(-1 / 3)$.
c) $\lim _{n \rightarrow \infty} A^{n}\binom{1}{0}=(-1 / 3)\binom{-2}{-2}=\binom{2 / 3}{2 / 3}$.
4. Well, $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)=\left(S \Lambda S^{-1}-\lambda_{1} I\right)\left(S \Lambda S^{-1}-\lambda_{2} I\right) \cdots\left(S \Lambda S^{-1}-\right.$ $\left.\lambda_{n} I\right)=S\left(\Lambda-\lambda_{1} I\right) \cdots\left(\Lambda-\lambda_{n} I\right) S^{-1}$. Now the matrix $\Lambda-\lambda_{i} I$ is diagonal with $\lambda_{k}-\lambda_{i}$ in the k th spot, and thus is 0 when $k=i$. Now one easily checks that the product is zero.
5. To find the eigenvalues of B, we compute $\operatorname{det}(B-\lambda I)=\operatorname{det}\left(\begin{array}{cc}3-\lambda & 2 \\ -5 & -3-\lambda\end{array}\right)=$ $-(3+\lambda)(3-\lambda)+10=\lambda^{2}-9+10=\lambda^{2}+1=(\lambda+i)(\lambda-i)$. So the eigenvalues are $i,-i$, and thus B is diagonalizable: $B=S\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right) S^{-1}$, so $B^{4}=S\left(\begin{array}{cc}i^{4} & 0 \\ 0 & (-i)^{4}\end{array}\right) S^{-1}=S I S^{-1}=$ I. For C, we consider $\operatorname{det}(C-\lambda I)=\operatorname{det}\left(\begin{array}{cc}5-\lambda & 7 \\ -3 & -4-\lambda\end{array}\right)=-(4+\lambda)(5-\lambda)+21=$ $\lambda^{2}-\lambda+1$. I claim that $e^{\pi i / 3}$ and $e^{-\pi i / 3}$ are the roots (if you are unsure about this, use sin's and cos's). Given this, argue as above that $B^{3}=-I$, using that $\left(e^{\pi i / 3}\right)^{3}=e^{\pi i}=-1$.
6. (5 points each)

1. $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}.9-\lambda & .15 \\ .1 & .85-\lambda\end{array}\right)=(.9-\lambda)(.85-\lambda)-.015=\lambda^{2}-(1.75) \lambda+$ $0.75=(\lambda-1)(\lambda-.75)$. To find the eigenvector, we must solve $\left(\begin{array}{cc}-0.1 & .15 \\ 0.1 & 0.15\end{array}\right)\binom{x_{1}}{x_{2}}=0$, and arrive at $\binom{3}{2}$.
2. The other eigenvector is found by solving $\left(\begin{array}{cc}0.15 & 0.15 \\ 0.1 & 0.1\end{array}\right)\binom{x_{1}}{x_{2}}=0$, and $\binom{1}{-1}$ works. So we see that $A=\left(\begin{array}{cc}3 & 1 \\ 2 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 0.75\end{array}\right)\left(\begin{array}{cc}-1 & -1 \\ -2 & 3\end{array}\right)(-1 / 5)$. So the limit in question is $\left(\begin{array}{cc}3 & 1 \\ 2 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 0.75\end{array}\right)\left(\begin{array}{cc}-1 & -1 \\ -2 & 3\end{array}\right)(-1 / 5)=\left(\begin{array}{ll}0.6 & 0.6 \\ 0.4 & 0.4\end{array}\right)$.
3. Starting with $\left(\begin{array}{ccc}.7 & .1 & .2 \\ .1 & .6 & .3\end{array}\right)$, and using the rule that each column must add to one, we obtain $\left(\begin{array}{lll}.7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5\end{array}\right)$. The steady state eigenvector is $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. This is so for any symmetric Markov matrix because all the rows must add to one also (since $A=A^{t}$), and so A acting on the vector consisting of 1's yields itself.
4. (5 points each)
5. a) $\|\mathbf{v}\|=\left(\sum 1 / 2^{n}\right)^{1 / 2}=\sqrt{2}$.
b) $\|\mathbf{v}\|=\left(\sum a^{2 n}\right)^{1 / 2}=\left(\sum\left(a^{2}\right)^{n}\right)^{1 / 2}=1 /\left(1-a^{2}\right)^{1 / 2}$.
c) $\|\mathbf{v}\|^{2}=\int_{0}^{2 \pi}(1+\sin (x))^{2} d x=\int_{0}^{2 \pi}\left(1+2 \sin (x)+\sin ^{2}(x)\right) d x=2 \pi+0+\pi=3 \pi$, so $\|\mathbf{v}\|=\sqrt{3 \pi}$.
6. We recall that the fourier series for the "square wave" function $s q$ was given in the text as $s q=(4 / \pi)(\sin (x)+\sin (3 x) / 3+\sin (5 x) / 5+\ldots)$. Now we are considering $f=$ $1 / 2+(1 / 2) s q$ so its expansion must be $1 / 2+(2 / \pi)(\sin (x)+\sin (3 x) / 3+\sin (5 x) / 5+\ldots)$. As for $f(x)=x$, an easy integration by parts reveals $a_{0}=\pi$, while all other $a_{k}=0$, and $b_{k}=-2 / k$.
7. (3,3 and 4 points)
8. No. Choose $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then $\operatorname{det}(A-\lambda I)=\lambda^{2}$ whose only roots are zero, while A is not zero.
9. No. Same example as in 1.
10. Yes. Let $A^{2}=0$. Then certainly $\operatorname{det}(A)=0$ (A cannot be invertible. If $A=0$ this is clearly so, if not, $A^{-1} A^{2}=A$ but also $A^{-1} A^{2}=A^{-1} 0=0$, a contradiction). However, if $\lambda \neq 0$, then $(A-\lambda I)((1 / \lambda) A+I)=0+A-A-\lambda I=-\lambda I$. So we see that $(A-\lambda I)^{-1}=$ $(-1 / \lambda)((1 / \lambda) A+I)=A-(1 / \lambda) I$ makes sense for all $\lambda \neq 0$. Thus $p(\lambda)=\operatorname{det}(A-\lambda I)$ has only $\lambda=0$ as a root.
11. (3,4 and 3 points)
12. No. Consider $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
13. Yes, A^{-1} also has only 1's as eigenvalues. Suppose that $A^{-1} \mathbf{y}=\lambda \mathbf{y}$. Then $A \mathbf{y}=$ $\lambda^{-1} \mathbf{y}$. Similarly, $A \mathbf{y}=\lambda \mathbf{y}$ implies $A^{-1} \mathbf{y}=\lambda^{-1} \mathbf{y}$. Therefore, A and A^{-1} have the same eigenvectors, with inverse eigenvalues; so A^{-1} has only 1's as eigenvalues.
14. Consider $A=\left(\begin{array}{ll}x & 1 \\ 0 & y\end{array}\right)$.
