SOLUTIONS TO PSET 5

1. Well, $A A^{-1}=I$ means: if A_{1}, \ldots, A_{n} denote the rows of A, and B_{1}, \ldots, B_{n} denote the columns of A^{-1}, then $A_{i} B_{j}=\delta_{i j}$ where the symbol $\delta_{i j}$ is equal to 1 if $i=j$ and 0 if $i \neq j$. But this says that B_{1} is orthogonal to the space spanned by $\left\{A_{2}, \ldots, A_{n}\right\}$.
2. (5 points each)
a) $A^{t} A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$, while $A^{t} \mathbf{b}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)=\binom{2}{5}$. So our equation is $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\binom{\hat{x_{1}}}{\hat{x_{2}}}=\binom{2}{5}$, yielding $\hat{x_{2}}=3$ and $\hat{x_{1}}=-1$. So $\mathbf{p}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)\binom{-1}{3}=$ $\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$, and $\mathbf{e}=\mathbf{b}-\mathbf{p}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)-\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right)$.
b) $A^{t} A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right)$, while $A^{t} \mathbf{b}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)=\binom{8}{14}$.

So our equation is $\left(\begin{array}{ll}2 & 2 \\ 2 & 3\end{array}\right)\binom{\hat{x_{1}}}{\hat{x}_{2}}=\binom{8}{14}$, yielding $\hat{x_{2}}=6$ and $\hat{x_{1}}=-2$. So $\mathbf{p}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right)\binom{-2}{6}=$ $\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)$, and $\mathbf{e}=\mathbf{b}-\mathbf{p}=\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)-\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. (Note that this makes sense: \mathbf{b} is already in the column space of A).
3. Well, $A\left(A^{t} A\right)^{-1} A^{t} A\left(A^{t} A\right)^{-1} A^{t}=A\left(A^{t} A\right)^{-1} A^{t}$ (just group the terms appropriately), so this says that $P^{2}=P$. This makes sense because $P \mathbf{b}$ is already in the column space of A; so the projection of $P \mathbf{b}$ to the column space of A must be the $P \mathbf{b}$.
4. Well, we know that $A^{t} A$ is invertible iff A has linearly independent columns (this is 4G in the book). Now, B has linearly independent rows iff B^{t} has linearly independent columns. Thus, the assumption implies that $\left(B^{t}\right)^{t} B^{t}=B B^{t}$ is invertible.
5. (5 point for each part).

1) We know (pg. 210, numbers (6) and (7)) that $A^{t} A=\left(\begin{array}{cc}4 & 8 \\ 8 & 26\end{array}\right)$ and $A^{t} \mathbf{b}=\binom{36}{112}$. Solving $\left(\begin{array}{cc}4 & 8 \\ 8 & 26\end{array}\right)\binom{C}{D}=\binom{36}{112}$ gives $C=1$ and $D=4$, yielding the line $1+4 t$. The heights are given by $\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right)\binom{1}{4}=\left(\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right)$, and the errors by $\left(\begin{array}{c}0-1 \\ 8-5 \\ 8-13 \\ 20-17\end{array}\right)=\left(\begin{array}{c}-1 \\ 3 \\ -5 \\ 3\end{array}\right)$.
The sum of the squares is 44 .
2) The four equations are $\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right)$, i.e., $x_{1}=0, x_{1}+x_{2}=8, x_{1}+3 x_{2}=$

8 , and $x_{1}+4 x_{2}=20$ (looking at the first three equations tells you right away that the system is unsolvable). Changing the measurements to $\left(\begin{array}{c}1 \\ 5 \\ 13 \\ 17\end{array}\right)$ does yield a solution: $(1,4)$, as shown above.
6. Applying the method, we have the unsolvable system $\left(\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)\binom{C}{D}=\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)$. So we multiply both sides by A^{t} to get $A^{t} A=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)$ and $A^{t} \mathbf{b}=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)=\binom{35}{42}$, and we solve $\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)\binom{C}{D}=\binom{35}{42}$ to get $C=9$ and $D=4$.
7. We know that Q is orthogonal iff $Q^{t} Q=I$. But, we have that if Q_{1} and Q_{2} are orthogonal, then $\left(Q_{1} Q_{2}\right)^{t}\left(Q_{1} Q_{2}\right)=Q_{2}^{t} Q_{1}^{t} Q_{1} Q_{2}=Q_{2}^{t} Q_{2}=I$.
8. (5 points each)

1) As $\mathbf{a}=\binom{1}{1}$, a vector \mathbf{b} is orthogonal to \mathbf{a} iff $\mathbf{b}=\binom{\lambda}{-\lambda}$. But $\mathbf{b}-2 \mathbf{a}=\binom{2}{-2}$.
2) $\mathbf{q}_{1}=\mathbf{a} /\|\mathbf{a}\|=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$, and $\mathbf{q}_{2}=\mathbf{B} /\|\mathbf{B}\|=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$. Finally $\left(\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)\left(\begin{array}{cc}\sqrt{2} & ? \\ 0 & 2 \sqrt{2}\end{array}\right)$
implies that $?=2 \sqrt{2}$.
9. (5 points each)
a) The columns of Q are clearly mutally orthogonal, so we just need to get the norms to be 1 . Since the norm of all these columns is clearly 2 , we set $c=1 / 2$.
b) $Q=1 / 2\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1\end{array}\right)$ will work. There are other choices; but the second column determines everything.
