SOLUTIONS TO PSET 4

1. a) (5 points) $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 6 & 3 \\ 0 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 5\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4\end{array}\right)$ so this matrix is invertible. Therefore, the column space consists of all vectors in \mathbb{R}^{3}, and no nontrivial linear combo. of the rows can be zero.
b) (5 points) $\left(\begin{array}{llll}1 & 1 & 1 & b_{1} \\ 1 & 2 & 4 & b_{2} \\ 2 & 4 & 8 & b_{3}\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 1 & b_{1} \\ 0 & 1 & 3 & b_{2}-b_{1} \\ 0 & 2 & 6 & b_{3}-2 b_{1}\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 1 & 1 & b_{1} \\ 0 & 1 & 3 & b_{2}-b_{1} \\ 0 & 0 & 0 & b_{3}-2 b_{2}\end{array}\right)$.

So the column space consists of $\left\{\left(b_{1}, b_{2}, b_{3}\right) \mid b_{3}-2 b_{2}=0\right\}$. The last two rows are linearly dependant.
2. a) (5 points) $A=\left(\begin{array}{ccc}1 & 4 & 0 \\ 2 & 11 & 5 \\ -1 & 2 & 10\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 4 & 0 \\ 0 & 3 & 5 \\ 0 & 6 & 10\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 4 & 0 \\ 0 & 3 & 5 \\ 0 & 0 & 0\end{array}\right)$ therefore $2=$ $r k(A)=r k\left(A^{t}\right)$.
b) (5 points) $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & q\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & q-1\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & q-2\end{array}\right)$. So the rank is 3 if $q \neq 2$, and 2 if $q=2$.
3. a) (5 points) $\left(\begin{array}{lll}2 & 4 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$.
b) (5 points) $\left(\begin{array}{lll}2 & 4 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
4. Well, U having n pivots means that, after rescaling, we can suppose all the diagonals are equal to 1 . So the last column has $n-1$ numbers which can be anything, and a 1 at the bottom. But this means that we can eliminate upward to kill all of those $n-1$ numbers, and get that that last column has $n-1$ zeros and a 1 at the bottom. Now proceed leftward.
5. Well, we first consider $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$; this is in reduced form and the fact that the diagonals are all nonzero gives invertibility. So these three columns are linearly independant.

For the second part, just note that $4 v_{3}-v_{2}-v_{1}-v_{4}=0$.
6. Consider a linear combo. $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. This is the same as $c_{1}\left(w_{2}+w_{3}\right)+$ $c_{2}\left(w_{1}+w_{3}\right)+c_{3}\left(w_{1}+w_{2}\right)=0$, which is $\left(c_{2}+c_{3}\right) w_{1}+\left(c_{1}+c_{3}\right) w_{2}+\left(c_{1}+c_{2}\right) w_{3}=0$. But the linear independance of the w 's now implies that $c_{2}+c_{3}=c_{1}+c_{3}=c_{1}+c_{2}=0$. The last two equations give $c_{2}=c_{3}$, but then the first term gives $c_{2}=0$ and the conclusion follows.
7. Well, clearly $C(A)=\left\{\left(x_{1}, x_{2}, 0\right)\right\}$ and $C\left(A^{t}\right)=\left\{\left(0, x_{2}, x_{3}\right)\right\}$. Further, since A is in reduced form we see that $N(A)=\left\{\left(x_{1}, 0,0\right)\right\}$ and by inspection $N\left(A^{t}\right)=\left\{\left(0,0, x_{3}\right)\right\}$. Upon adding I, A becomes invertible, so $N(A)=N\left(A^{t}\right)=0$ while $C(A)=C\left(A^{t}\right)=\mathbb{R}^{3}$.
8. (2.5 points each)
a) The column space is spanned by $\left\{v_{i} \mathbf{u}+z_{i} \mathbf{w}\right\}$. We note that this is always contained in the $\{\mathbf{u}, \mathbf{w}\}$ plane.
b) The row space is spanned by $\left\{u_{i} \mathbf{v}^{t}+w_{i} \mathbf{z}^{t}\right\}$; note that this is contained in the $\left\{\mathbf{v}^{t}, \mathbf{u}^{t}\right\}$ plane.
c) If $\mathbf{v}=\mathbf{z}$ or if $\mathbf{u}=\mathbf{w}$.
d) $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)+\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ which has rank 2 .
9. $A=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1\end{array}\right) \rightarrow$ $\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ (after a row permutation in the last step). So this is the incidence matrix for the graph which looks like $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$. A tree is a graph without loops, and which contains all four edges of the original graph. One ignores edge directions when counting trees; staring at the graph in question produces seven more.
10. We note that $\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)=x_{1}-x_{3}$. So; adding the first two equations and subtracting the third gives $0=1$; i.e., $y_{1}=y_{2}=1$, and $y_{3}=-1$.
11. Given that $S \subseteq V$, suppose that $\mathbf{w} \in V^{\perp}$. Then $\mathbf{v} \cdot \mathbf{w}=0$ for all $\mathbf{v} \in V$, so certainly $\mathbf{v} \cdot \mathbf{w}=0$ for all vectors $\mathbf{v} \in S$. But this says that $\mathbf{w} \in S^{\perp}$.

