SOLUTIONS TO PSET 3

Problem 1. a) (5 points) Choose the lattice consisting of points (x, y) such that x and y are integers.

b) (5 points) Well, the fact that *cx* stays in the set says that the set is a union of lines. So take the *x*-axis union the *y*-axis.

Problem 2. (2.5 points each)

a) False. The compliment of a subspace is never a subspace, as it doesn't contain 0.

b) True. The assumption implies that every column is zero.

c) True. Obviously $C(2A) \subseteq C(A)$ as each column of 2A is obtained as a linear combo. of columns of A (namely multiplying the corresponding column by 2). But $C(A) \subseteq C(2A)$ as well, as we can also multiply by 1/2.

d) False. Use A = I.

	/1	2	2	4	6		/1	2	2	4	6	
Problem 3. 1a) (2.5 points) we get	1	2	3	6	9	\rightarrow	0	0	3	6	9	\rightarrow
	0/	0	1	2	3)		0/	0	1	2	3)	

 $\begin{pmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ so the pivot variables are x_1 and x_3 .

1b) (2.5 points) we get $\rightarrow \begin{pmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{pmatrix}$; so x_1 and x_2 are the pivot variables.

2) (5 points) We easily arrive at (-2, 1, 0, 0, 0), (0, 0, -2, 1, 0), and (0, 0, -3, 0, 1) for a), (1, -1, 1) for b).

Problem 4. Given the special solution (12,0,0), we can find the general solution by adding solutions to the equation x - 3y - z = 0. Filling in (1,0) for (y,z) gives x = 3 and filling in (0,1) gives x = 1.

Problem 5.
$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 4 & 8 & 16 \end{pmatrix}$$
, $\begin{pmatrix} 2 & 6 & -3 \\ 1 & 3 & -3/2 \\ 2 & 6 & -3 \end{pmatrix}$, and $\begin{pmatrix} a & b \\ c & bc/a \end{pmatrix}$ all have rank 1.

Problem 6. We know that rank(I) = n, so we see that $n \le rank(A)$, and since A is $n \times n$, we have also $rank(A) \le n$, so rank(A) = n. Thus A is invertible as required.

Problem 7. a) (5 points) The rows of the reduced echelon form are obtained by multiplying on the left by a sequence of triangular (and hence invertible) matrices. So it follows that the rowspace of a matrix and its echelon form are the same; and the same reasoning for the nullspace.

b) (5 points) The answer is "upper triangular", as indicated in part a).

 $\begin{pmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - 2b_1 - b_2 \end{pmatrix}$. So the condition is $b_3 - 2b_1 - b_2 = 0$. Further, we see

from the fact that x_1 and x_2 are pivot variables that there is a unique special solution to Ax = 0, which is (2,0,1).

Problem 9. The rank is the number of nonzero singular values.