SOLUTIONS TO PSET 3

Problem 1. a) (5 points) Choose the lattice consisting of points (x, y) such that x and y are integers.
b) (5 points) Well, the fact that $c x$ stays in the set says that the set is a union of lines. So take the x-axis union the y-axis.

Problem 2. (2.5 points each)
a) False. The compliment of a subspace is never a subspace, as it doesn't contain 0 .
b) True. The assumption implies that every column is zero.
c) True. Obviously $C(2 A) \subseteq C(A)$ as each column of $2 A$ is obtained as a linear combo. of columns of A (namely multiplying the corresponding column by 2). But $C(A) \subseteq C(2 A)$ as well, as we can also multiply by $1 / 2$.
d) False. Use $A=I$.

Problem 3. 1a) (2.5 points) we get $\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3\end{array}\right) \rightarrow\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3\end{array}\right) \rightarrow$ $\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ so the pivot variables are x_{1} and x_{3}.

1b) (2.5 points) we get $\rightarrow\left(\begin{array}{ccc}2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0\end{array}\right)$; so x_{1} and x_{2} are the pivot variables.
$2)$ (5 points) We easily arrive at $(-2,1,0,0,0),(0,0,-2,1,0)$, and $(0,0,-3,0,1)$ for a), $(1,-1,1)$ for $b)$.

Problem 4. Given the special solution $(12,0,0)$, we can find the general solution by adding solutions to the equation $x-3 y-z=0$. Filling in $(1,0)$ for (y, z) gives $x=3$ and filling in $(0,1)$ gives $x=1$.

Problem 5. $\left(\begin{array}{ccc}1 & 2 & 4 \\ 2 & 4 & 8 \\ 4 & 8 & 16\end{array}\right),\left(\begin{array}{ccc}2 & 6 & -3 \\ 1 & 3 & -3 / 2 \\ 2 & 6 & -3\end{array}\right)$, and $\left(\begin{array}{cc}a & b \\ c & b c / a\end{array}\right)$ all have rank 1.
Problem 6. We know that $\operatorname{rank}(I)=n$, so we see that $n \leq \operatorname{rank}(A)$, and since A is $n \times n$, we have also $\operatorname{rank}(A) \leq n$, so $\operatorname{rank}(A)=n$. Thus A is invertible as required.

Problem 7. a) (5 points) The rows of the reduced echelon form are obtained by multiplying on the left by a sequence of triangular (and hence invertible) matrices. So it follows that the rowspace of a matrix and its echelon form are the same; and the same reasoning for the nullspace.
b) (5 points) The answer is "upper triangular", as indicated in part a).

Problem 8. We use elimination: $\left(\begin{array}{cccc}1 & 2 & -2 & b_{1} \\ 2 & 5 & -4 & b_{2} \\ 4 & 9 & -8 & b_{3}\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 2 & -2 & b_{1} \\ 0 & 1 & 0 & b_{2}-2 b_{1} \\ 0 & 1 & 0 & b_{3}-4 b_{1}\end{array}\right) \rightarrow$ $\left(\begin{array}{cccc}1 & 2 & -2 & b_{1} \\ 0 & 1 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 0 & b_{3}-2 b_{1}-b_{2}\end{array}\right)$. So the condition is $b_{3}-2 b_{1}-b_{2}=0$. Further, we see from the fact that x_{1} and x_{2} are pivot variables that there is a uniques special solution to $A x=0$, which is $(2,0,1)$.

Problem 9. The rank is the number of nonzero singular values.

