SOLUTIONS TO PROBLEM SET 2

Problem 1. 1) (2.5 points) $A B=A\left(\begin{array}{llll}B_{1} & B_{2} & B_{3} & B_{4}\end{array}\right)=\left(\begin{array}{llll}A B_{1} & A B_{2} & A B_{3} & A B_{4}\end{array}\right)$.
2) (2.5 points) $A B=\binom{A^{1}}{A^{2}} B=\binom{A^{1} B}{A^{2} B}$.
3) (2.5 points) $A B=\binom{A^{1}}{A^{2}}\left(\begin{array}{llll}B_{1} & B_{2} & B_{3} & B_{4}\end{array}\right)=\left(\begin{array}{llll}A^{1} B_{1} & A^{1} B_{2} & A^{1} B_{3} & A^{1} B_{4} \\ A^{2} B_{1} & A^{2} B_{2} & A^{2} B_{3} & A^{2} B_{4}\end{array}\right)$.
4) (2.5 points) $A B=\left(\begin{array}{lll}A_{1} & A_{2} & A_{3}\end{array}\right)\left(\begin{array}{l}B^{1} \\ B^{2} \\ B^{3}\end{array}\right)=\left(A_{1} B^{1}+A_{2} B^{2}+A_{3} B^{3}\right)$.

Problem 2. Well, the imaginary part is $i(B \mathbf{x}+A \mathbf{y})$, so the final matrix must be $\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right)$.
Problem 3. When we put $c=0$, the second row is all zeros, so the matrix is noninvertible. When $c=7$, the second and third column are equal, and when $c=2$, the first and second row are equal.

Problem 4. You are given A^{-1}, A and D, so checking $A^{-1}=D A D$ is a routine matrix multiplication. This equation implies $A D A D=I$, or equivalently $(A D)^{2}=I$, thus $A D$ is its own inverse.

Problem 5. The first equation is $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$, so we see that $c_{1}=4$, and $c_{1}+c_{2}=5$, so $c_{2}=1$, and finally $c_{1}+c_{2}+c_{3}=6$, so $c_{3}=1$ as well. Then we solve $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)$, to get that $x_{3}=1, x_{2}=0$, and $x_{1}=3 . A=L U=$ $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right)$.

Problem 6. The fact that $P_{1} P_{2}$ is a permuatation matrix follows from the fact that $P_{1} M$ permutes the rows of M, for any matrix M. If you permute the rows of a permutation matrix, you get another (just by definition). For the first example, take $P_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $P_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$. For the second example, let P_{3} be the identity matrix.

Problem 7. a) $\left(2.5\right.$ points) $\left(A^{2}-B^{2}\right)^{t}=\left(A^{2}\right)^{t}-\left(B^{2}\right)^{t}=\left(A^{t}\right)^{2}-\left(B^{t}\right)^{2}=A^{2}-B^{2}$.
b) (2.5 points) $(A+B)(A-B)=A^{2}-B^{2}+B A-A B$. The first term is symmetric by a). On the other hand, $(B A-A B)^{t}=A^{t} B^{t}-B^{t} A^{t}=A B-B A$. So this will fail for any two noncommuting matrices.
c) $\left(2.5\right.$ points) $(A B A)^{t}=A^{t} B^{t} A^{t}=A B A$.
d) (2.5 points) $(A B A B)^{t}=B^{t} A^{t} B^{t} A^{t}=B A B A$, so, noncommuting matrices will make this fail.

Problem 8. a) (5 points) $A^{t} \mathbf{y}=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & -1\end{array}\right)\left(\begin{array}{l}y_{B C} \\ y_{C S} \\ y_{B S}\end{array}\right)=\left(\begin{array}{c}y_{B C}+y_{B S} \\ y_{C S}-y_{B C} \\ -y_{C S}-y_{B S}\end{array}\right)=\left(\begin{array}{l}x_{B}-x_{C}+x_{B}-x_{S} \\ x_{C}-x_{S}-x_{B}+x_{C} \\ x_{S}-x_{C}-x_{B}+x_{S}\end{array}\right)=$ $\left(\begin{array}{l}2 x_{B}-x_{C}-x_{S} \\ 2 x_{C}-x_{S}-x_{B} \\ 2 x_{S}-x_{C}-x_{B}\end{array}\right)$.
b) (5 points) left to the reader.

