SOLUTIONS TO PROBLEM SET 1

Problem 1. (5+5 points). a) $\left(v_{1} w_{1}+v_{2} w_{2}\right)^{2}=v_{1}^{2} w_{1}^{2}+2 v_{1} w_{1} v_{2} w_{2}+v_{2}^{2} w_{2}^{2}$, while $\left(v_{1}^{2}+\right.$ $\left.v_{2}^{2}\right)\left(w_{1}^{2}+w_{2}^{2}\right)=v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}$.
b) The difference RHS -LHS $=v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}-2 v_{1} w_{2} v_{2} w_{1}=\left(v_{1} w_{2}-v_{2} w_{1}\right)^{2} \geq 0$.

Problem 2. (10 points). We suppose $\|\mathbf{v}\|=5$ and $\|\mathbf{w}\|=3$. We know that $\mathbf{v} \cdot \mathbf{w}=$ $\|\mathbf{v}\|\|\mathbf{w}\| \cos (\theta)$, so the minimum is when $\theta=\pi$ (and the dot product is -15), and the maximum is when $\theta=0$ (and the dot product is 15). For the second part, $\|\mathbf{v}-\mathbf{w}\|$ is the length of the vector from the tip of \mathbf{w} to the tip of \mathbf{v}, and we have that $\|\mathbf{v}-\mathbf{w}\|^{2}=$ $(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w})=\mathbf{v} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}-2 \mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2 \mathbf{v} \cdot \mathbf{w}=34-2 \mathbf{v} \cdot \mathbf{w}$. So this function is maximized when $\mathbf{v} \cdot \mathbf{w}$ is minimized, and vice versa. So the max of $\|\mathbf{v}-\mathbf{w}\|$ occurs at $\sqrt{64}=8$ and the minimum at $\sqrt{4}=2$. We note that the maximum occurs when \mathbf{v} and \mathbf{w} face in opposite directions, and the minimum when they line up (the real way to see this is just to draw a picture in the plane).

Problem 3. (10 points). We are given two planes $x+y+3 z=6$ and $x-y+z=4$. We to find a point lying on both with $z=2$; so, we need to solve simultaniously $x+y+6=6$ and $x-y+2=4$, i.e., $x+y=0$ and $x-y=2$. Solve by adding the equations to obtain that $(x=1, y=-1)$ provides the solution, so we obtain the point $(1,-1,2)$. If instead we have $z=0$, the equations become $x+y=6$ and $x-y=4$, and obtain the solution $(x=5, y=1)$; giving the point $(5,1,0)$. To find a point halfway in between, we note that the line through these two points is parametrized by $(5,1,0) t+(1,-1,2)(1-t)=(4,2,-2) t+(1,-1,2)$; so that putting $t=0$ gives $(1,-1,2)$ and putting $t=1$ gives $(5,1,0)$; so our desired point is when $t=1 / 2$; which is $(2,1,-1)+(1,-1,2)=(3,0,1)$.

Problem 4. (10 points). The first step is the multiply the top equation by 2 and subtract that from the second equation; resulting in $(d-10) y-z=0$. Thus $d=10$ results in the equation $-z=0$, forcing row exchange with the third row. The resulting upper triangular matrix is $\left(\begin{array}{ccc}2 & 5 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$, which is indeed nonsingular. For the second part, if we put $d=11$, then we obtain the equation $y-z=0$, which is also the third equation, making the system singular.

Problem 5. (10 points). We have the three equations $a x+2 y+3 z=0, a x+a y+4 z=0$, and $a x+a y+a z=0$. We see right off the bat that putting $a=0$ removes x from every equation, so the resulting system is automatically singular. Now, applying the first step of elimination, we subtract equation 1 from equation 2 to get $(a-2) y+z=0$, and subtract equation 1 from equation 3 to get $(a-2) y+(a-3) z=0$. So we see that $a=4$ makes both of these equations equal to $2 y+z=0$, and that $a=2$ makes these equations $z=0$ and $-z=0$, respectively. So 0,2 , and 4 are the three values.

Problem 6. (10 points). One easily checks that $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$ is a solution. To arrive at this one considers the matrix equation $\left(\begin{array}{llll}a & 0 & 0 & 0 \\ b & c & 0 & 0 \\ d & e & f & 0 \\ g & h & i & j\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1\end{array}\right)=$ $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1\end{array}\right)$. So, one first sees that $a=1$, and then that $b+c=0$ and $c=1$; this gives the first two rows, the other two are obtained similarly.

Problem 7. (10 points). The obvious multiplication gives $-C A^{-1} B+D$.
Problem 8. ($3+3+4+2$ points).

1) We wish to find the set of vectors \mathbf{v} such that $\mathbf{v} \cdot(1,1,1)=0$. Writing \mathbf{v} in components $\left(v_{1}, v_{2}, v_{3}\right)$, we see that we are looking at the set of $\left(v_{1}, v_{2}, v_{3}\right)$ such that $\left(v_{1}, v_{2}, v_{3}\right)$. $(1,1,1)=v_{1}+v_{2}+v_{3}=0$; the equation of a plane.
2) Midpoints are vectors of the form $(0, \pm 1, \pm 1),(\pm 1,0, \pm 1)$, and $(\pm 1, \pm 1,0)$, they dot with $(1,1,1)$ to be zero when you have one positive and one negative component, e.g. $(0,-1,1)$. Obviously there are six of these.
3) The "consectutive" midpoints are those which we found in part 2) (draw a picture to see why this should be so). There are six of them, and the angles between them must be sixty degrees, so that they form a planar hexagon.
