SOLUTIONS TO PSET 10

Problem 1. The wavelet basis is $\mathbf{w}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right), \mathbf{w}_{4}=$ $\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)$. If $\mathbf{e}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$, then $\mathbf{e}=(1 / 4)\left(\mathbf{w}_{1}+\mathbf{w}_{2}+2 \mathbf{w}_{3}\right)$, and $\mathbf{v}=\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right)=\mathbf{w}_{3}+\mathbf{w}_{4}$.

Problem 2. We have that $b_{1} \mathbf{v}_{1}+\ldots+b_{n} \mathbf{v}_{n}=V \mathbf{b}=c_{1} \mathbf{w}_{1}+\ldots+c_{n} \mathbf{w}_{n}=W \mathbf{c}$. Therefore $\mathbf{b}=V^{-1} W \mathbf{c}$, and so $V^{-1} W$ is M, the change of basis matrix.

Problem 3. Well, $W^{*}=\left(W^{-1}\right)^{t}$, and this implies that $\left(W^{*}\right)^{*}=\left(\left(W^{*}\right)^{-1}\right)^{t}=\left(\left(\left(W^{-1}\right)^{t}\right)^{-1}\right)^{t}=$ W (use that inverse and transpose commute).

Problem 4. (5 points each)

1. $A=\left(\begin{array}{cc}3 & 3 \\ -1 & 1\end{array}\right)$. Therefore, $A^{t} A=\left(\begin{array}{cc}3 & -1 \\ 3 & 1\end{array}\right)\left(\begin{array}{cc}3 & 3 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}10 & 8 \\ 8 & 10\end{array}\right)$. We find the eigenvalues by computing $\operatorname{det}\left(\begin{array}{cc}10-\lambda & 8 \\ 8 & 10-\lambda\end{array}\right)=(10-\lambda)^{2}-64=100+\lambda^{2}-20 \lambda-$ $64=\lambda^{2}-20 \lambda+36=(\lambda-18)(\lambda-2)$. So the singular values are $\sqrt{18}$ and $\sqrt{2}$. For the eigenvalue $\lambda=18$, we find the unit eigenvector by solving $\left(\begin{array}{cc}-8 & 8 \\ 8 & -8\end{array}\right)\binom{\mathbf{v}_{1}}{\mathbf{v}_{2}}=0$, and so we get $\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$. For the eigenvalue $\lambda=2$, we look at $\left(\begin{array}{ll}8 & 8 \\ 8 & 8\end{array}\right)\binom{\mathbf{w}_{1}}{\mathbf{w}_{2}}=0$, and we get $\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}$.
2. With the same A, $A A^{t}=\left(\begin{array}{cc}3 & 3 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}3 & -1 \\ 3 & 1\end{array}\right)=\left(\begin{array}{cc}18 & 0 \\ 0 & 2\end{array}\right)$, so we see the same eigenvalues, and arrive at eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$. From this we obtain the SVD for A which reads $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\sqrt{18} & 0 \\ 0 & \sqrt{2}\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$.

Problem 5. Suppose A is $n \times n$. If $\operatorname{det}(A)=0$, then it must be that $r k(A)<n$. But we have that $r k\left(A^{+}\right)=r k(A)$ (this follows from the defintion of $A^{+}=V \Sigma^{+} U^{T}$; the rank of A is the number of nonzero singular values, which is also the number of nonzero entries of Σ^{+}). Thus A^{+}doesn't have full rank, and so it isn't invertible, and so $\operatorname{det}\left(A^{+}\right)=0$.

Problem 6. Let \hat{x} be any solution to $A^{T} A \hat{x}=A^{T} b$. Then as $A^{T} A x^{+}=A^{T} b$, we see that $A^{T} A\left(\hat{x}-x^{+}\right)=A^{T} b-A^{T} b=0$. Thus $\hat{x}-x^{+}$is in $N\left(A^{T} A\right)=N(A)$. Now, as $N(A)^{\perp}=$ $\operatorname{Row}(A)$, the equality $\|\hat{x}\|^{2}=\left\|x^{+}\right\|^{2}+\left\|\hat{x}-x^{+}\right\|^{2}$ will follow if we can show that $x^{+}=A^{+} b$ is in $\operatorname{Row}(A)$. But recall the defintion of A^{+}: we had that $A^{+} u_{i}=\sigma_{i}^{-1} v_{i}($ for $1 \leq i \leq r)$, and $A^{+} u_{i}=0$ for $i>r$. Thus the image A^{+}is exactly $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}=\operatorname{Row}(A)$.

Problem 7. Well, $A A^{+}$is the projection onto the column space of A, while $A^{+} A$ is the projection onto the rowspace. Therefore, if $b=p+e$ is the decomposition of b into its
column space and left nullspace part, then $A A^{+} p=p$ while $A A^{+} e=0$. Similarly, $A^{+} A x_{r}=$ x_{r}, while $A^{+} A x_{n}=0$.

