18.06 FINAL SOLUTIONS

Problem 1. (10 points) $B=\left(\begin{array}{ccc}a & b & a+b \\ b & c & b+c \\ x & y & z\end{array}\right)$. We know that symmetric matrices have real eigenvalues and orthogonal eigenvectors. So we set $x=a+b$ and $y=b+c$. This leaves only the singularity of B. For this, we note that setting $z=x+y=a+2 b+c$ makes the third column a sum of the first two, thus ensuring singularity.

Problem 2. (4 points each). $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & p\end{array}\right)$.
a) To find the eigenvalues of A, we compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}-\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & p-\lambda\end{array}\right)=$ $\left(\lambda^{2}\right)(p-\lambda)$ (because A is upper triangular). So the eigenvalues are 0 and p.
b) If $p \neq 0$, the we wish to find $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ so that $A\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}p a \\ p b \\ p c\end{array}\right)$. But $A\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}b \\ c \\ p c\end{array}\right)$, so we need $b=p a$ and $c=p b$; and so $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}1 \\ p \\ p^{2}\end{array}\right)$ works.
c) The singular vaues of A are found by first computing the eigenvalues of $A^{T} A=$ $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & p\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & p\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & p \\ 0 & 0 & 1+p^{2}\end{array}\right)$. As this is upper triangular, the eigenvalues are 0,1 and $1+p^{2}$. So the singular values are 0,1 and $\sqrt{1+p^{2}}$.
d) In general, $d \mathbf{u} / d t=B \mathbf{u}$ is solved by $e^{B t} \mathbf{u}(0)$. For us, $B=\left(\begin{array}{ccc}2009 & 1 & 0 \\ 0 & 2009 & 1 \\ 0 & 0 & 2009+p\end{array}\right)=$
$A+$ 2009I. To compute $e^{B t}$, we note that $e^{B t}=\exp \left(t\left(\begin{array}{ccc}2009 & 0 & 0 \\ 0 & 2009 & 0 \\ 0 & 0 & 2009+p\end{array}\right)+t\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right)=$
$\left(\begin{array}{ccc}e^{2009} & 0 & 0 \\ 0 & e^{2009} & 0 \\ 0 & 0 & e^{p} e^{2009}\end{array}\right) \exp \left(t\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right.$. To compute $\exp \left(t\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right)$, we note
that $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)^{3}=0$. So $\exp \left(t\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\right)=I+$
$t\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)+\left(t^{2} / 2\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}1 & t & t^{2} / 2 \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right)$, and finally $e^{B t}=\left(\begin{array}{ccc}e^{2009} & t e^{2009} & e^{2009} t^{2} / 2 \\ 0 & e^{2009} & t e^{2009} \\ 0 & 0 & e^{p} e^{2009}\end{array}\right)$.
So our answer is $\left(\begin{array}{ccc}e^{2009} & t e^{2009} & e^{2009} t^{2} / 2 \\ 0 & e^{2009} & t e^{2009} \\ 0 & 0 & e^{p} e^{2009}\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}e^{2009} \\ 0 \\ 0\end{array}\right)$.

Problem 3. (8 points) A is 4×4 and has singular values $\{3,2,1,0\}$. As the product of the singular values is (up to sign) the determinant, we get that $\operatorname{det}(A)=0$, so A has nontrivial nullspace, and so 0 is an eigenvalue.

Problem 4. (3 points each). $A=Q R$ where Q is orthogonal and R is upper triangular with 1's on the diagonal.
a) $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(R^{T} Q^{T} Q R\right)=\operatorname{det}\left(R^{T} R\right)=\operatorname{det}(R)^{2}=1$ since $\operatorname{det}(R)=1$ by the assumption on R.
b) The equation $A^{T} A=R^{T} R$ tells us that $\left(R^{-1}\right)^{T}\left(A^{T} A\right)=R$; and since $\left(R^{-1}\right)^{T}$ is lower triangular, this is exactly the elimination of $A^{T} A$. So the pivots are all equal to 1 .
c) Yes, since $Q^{-1}(Q R) Q=R Q$.

Problem 5. (10 points) $C=A^{-1} B X$. We know that similar matrices have the same eigenvalues, so putting $X=A$ forces C and B to have the same eigenvalues.

Problem 6. (4 points each) A is 3×3 and has four 0 's and five 1 's.
a) A has rank 0 is impossible- it isn't the zero matrix.
b) A has rank 2: $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
c) A has rank 3: $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

Problem 7. (10 points each) A is 100×100.
a) A has all even integers as entries. Therefore each column of A has the form $2 \mathbf{c}$ where \mathbf{c} is a vector of integers. So we set $C=(1 / 2) A$. Then $\operatorname{det}(A)=\operatorname{det}(2 C)=2^{100} \operatorname{det}(C)$; so $\operatorname{det}(A)$ is an even integer (note that $\operatorname{det}(C)$ really is an integer because all the entries of C are integers and the det can be computed by the big formula).
b) This time, we use the big formula to compute $\operatorname{det}(C)=\sum \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots$ $a_{n \sigma(n)}$. This is a sum containing $100!$ terms. Now, $100!$ is an even number, and each term in the sum is odd (as a product of odd integers). Since the sum of two odd numbers is even, the sum of an even number of odd numbers is even; so this sum is an even integer.

Problem 8. (5 points each) We consider the vector space V of functions of the form $c_{1}+c_{2} e^{x}+c_{3} e^{2 x}$, with basis $\left\{1, e^{x}, e^{2 x}\right\}$.
a) $d / d x$ takes V to the space W spanned by $\left\{e^{x}, e^{2 x}\right\}$. We have that $\frac{d}{d x}(1)=0, \frac{d}{d x} e^{x}=e^{x}$, and $\frac{d}{d x} e^{2 x}=2 e^{2 x}$. So the linear transformation of $d / d x$ in the given bases is $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
b) We conisder the transformation ϕ from V to \mathbb{R} defined by $f \rightarrow f(7)$. This is linear: $\phi(f+g)=(f+g)(7)=f(7)+g(7)=\phi(f)+\phi(g)$, and $\phi(c f) \rightarrow c f(7)=c \phi(f)$.
c) No. $\int_{0}^{x} 1=x$ is a function not in V.

