Your PRINTED name is: _____

Please circle your recitation:				Grading
(1)	T 10	2-131	B. Mares	
(2)	T 10	2-132	A. Barakat	1
(3)	T 11	2-132	A. Barakat	2
(4)	T 11	2-131	B. Lehmann	2
(5)	T 12	2-132	A. Spiridonov	3
(6)	T 12	2-131	B. Lehmann	ა
(7)	T 1	2-131	A. Spiridonov	4
(8)	T 2	2-131	Y. Lekili	4
(9)	T 2	4-159	Z. Wang	Total.
(10)	T 3	2-131	Y. Lekili	Total:

- 1 (20 pts.) True or false. Explain why if false, or give an example if true.
 - (a) There exist matrices $A \neq 0$ that are simultaneously Hermitian $(A = A^H)$ and unitary $(A^H = A^{-1})$.
 - (b) There exist matrices $A \neq 0$ that are simultaneously anti-Hermitian $(A=-A^H) \text{ and unitary } (A^H=A^{-1}).$
 - (c) There exist matrices $A \neq 0$ that are simultaneously Hermitian $(A = A^H)$ and anti-Hermitian $(A = -A^H)$.
 - (d) There exist matrices A that are simultaneously Hermitian and Markov.

- 2 (30 pts.) Suppose we form a sequence of real numbers f_k defined by the recurrence $f_{k+1} = f_k f_{k-1} + f_{k-2}$, starting with the initial conditions $f_0 = 2$, $f_1 = 1$ and $f_2 = 0$.
 - (a) Define a 3-component vector $\vec{g}_k = (f_k, f_{k-1}, f_{k-2})^T$ and a 3×3 matrix A so that the recurrence is $\vec{g}_{k+1} = A\vec{g}_k$.
 - (b) If you constructed A correctly, the three eigenvalues should be 1 and $\pm i$ [I'm giving you these so you don't have to solve a cubic equation], and the latter two eigenvectors should be $(-1, \pm i, 1)^T$. Check that you have these $\pm i$ eigenvalues and eigenvectors, and find the $\lambda = 1$ eigenvector.
 - (c) Give an explicit formula for f_k for any k. (By "explicit," I mean involving elementary arithmetic and powers of complex numbers only. Formulas involving A^k are not acceptable.)
 - (d) Is there any choice of initial conditions that will make $|f_k|$ diverge as $k \to \infty$? Explain.

- **3 (30 pts.)** (a) Suppose $A = e^{iB}$ where B is Hermitian; what is $A^H A$? Hence A is a matrix.
 - (b) For the recurrence relation $\vec{f}_{k+1} = e^{iB}\vec{f}_k$, what is $||\vec{f}_k||^2/||\vec{f}_0||^2$? [Hint: part (a) is useful.]
 - (c) Compute \vec{f}_k explicitly [i.e. no matrix exponentials or powers of matrices] for $B = \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$ and $\vec{f}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. The eigenvectors of this B are $\vec{x}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\vec{x}_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ with eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -5$, respectively.
 - (d) Check that your answer from (b) is true for your answer from (c).

- **4 (20 pts.)** Some 3×3 real matrix A has eigenvalues $\lambda_1 = 0$, $\lambda_2 = 1$, and $\lambda_3 = 2$, with the corresponding eigenvectors $\vec{x}_1 = (1,0,0)^T$, $\vec{x}_2 = (0,1,2)^T$, and $\vec{x}_3 = (0,1,1)^T$.
 - (a) Give a basis for: (i) the null space N(A), (ii) the column space C(A), and (iii) the row space $C(A^H)$.
 - (b) Find all solutions \vec{x} to $A\vec{x} = \vec{x}_2 3\vec{x}_3$.
 - (c) Is A (i) real-symmetric, (ii) orthogonal, (iii) Markov, or (iv) none of the above?