18.06 Professor Johnson Quiz 3 December 3, 2007

SOLUTIONS

1 (20 pts.) True or false. Explain why if false, or give an example if true.
(a) There exist matrices $A \neq 0$ that are simultaneously Hermitian ($A=$ $\left.A^{H}\right)$ and unitary $\left(A^{H}=A^{-1}\right)$.
(b) There exist matrices $A \neq 0$ that are simultaneously anti-Hermitian $\left(A=-A^{H}\right)$ and unitary $\left(A^{H}=A^{-1}\right)$.
(c) There exist matrices $A \neq 0$ that are simultaneously Hermitian ($A=$ $\left.A^{H}\right)$ and anti-Hermitian $\left(A=-A^{H}\right)$.
(d) There exist matrices A that are simultaneously Hermitian and Markov.

Solution:

(a) True. For example, $A=I,-I$, or more generally, $A=S \Lambda S^{H}$, where S is any unitary matrix, and Λ is a diagonal matrix whose diagonal entries are ± 1.
(b) True. For example, the 1×1 matrix $A=i,-i$, or more generally, $A=S \Lambda S^{H}$, where S is any unitary matrix, and Λ is a diagonal matrix whose diagonal entries are $\pm i$.
(c) False. If A is Hermitian then all the eigenvalues are real, and if it is anti-Hermitian then the eigenvalues are imaginary, and the eigenvalues cannot be at the same time real and imaginary unless they are zero. The only Hermitian matrix whose eigenvalues are all 0 is the zero matrix, but $A \neq 0$.
(d) True, e.g. $A=I$. All 2×2 examples are of the form $\left(\begin{array}{cc}a & 1-a \\ 1-a & a\end{array}\right)$ with $0 \leq a \leq 1$.

2 (30 pts.) Suppose we form a sequence of real numbers f_{k} defined by the recurrence $f_{k+1}=f_{k}-f_{k-1}+f_{k-2}$, starting with the initial conditions $f_{0}=2, f_{1}=1$ and $f_{2}=0$.
(a) Define a 3-component vector $\vec{g}_{k}=\left(f_{k}, f_{k-1,}, f_{k-2}\right)^{T}$ and a 3×3 matrix A so that the recurrence is $\vec{g}_{k+1}=A \vec{g}_{k}$.
(b) If you constructed A correctly, the three eigenvalues should be 1 and $\pm i$ [I'm giving you these so you don't have to solve a cubic equation], and the latter two eigenvectors should be $(-1, \pm i, 1)^{T}$. Check that you have these $\pm i$ eigenvalues and eigenvectors, and find the $\lambda=1$ eigenvector.
(c) Give an explicit formula for f_{k} for any k. (By "explicit," I mean involving elementary arithmetic and powers of complex numbers only. Formulas involving A^{k} are not acceptable.)
(d) Is there any choice of initial conditions that will make $\left|f_{k}\right|$ diverge as $k \rightarrow \infty$? Explain.

Solution

(a) This recurrence gives $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. That is, the first row of A gives $f_{k+1}=$ $f_{k}-f_{k-1}+f_{k-2}$, while the second and third rows of A just give $f_{k}=f_{k}$ and $f_{k-1}=f_{k-1}$ (copying the first and second rows of \vec{g}_{k} to the second and third rows of \vec{g}_{k+1}.
(b) We need to find the nullspace of $A-\lambda I$, via elimination to obtain row-reduced echelon form. In each case, it will be convenient to swap the first two rows, which will make the first pivot 1 and will not change the nullspace. For $\lambda_{1}=1$:

$$
A-I=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\boxed{1} & -1 & 0 \\
0 & \boxed{-1} & 1 \\
0 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\boxed{1} & -1 & 0 \\
0 & \boxed{1} & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\boxed{1} & 0 & -1 \\
0 & \boxed{1} & -1 \\
0 & 0 & 0
\end{array}\right)
$$

for which the nullspace vector is $\vec{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
To check the provided $\pm i$ eigenvectors, we just multiply them by A :

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
-1 \\
\pm i \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \mp i+1 \\
-1 \\
\pm i
\end{array}\right)=\left(\begin{array}{c}
\mp i \\
-1 \\
\pm i
\end{array}\right)= \pm i\left(\begin{array}{c}
-1 \\
\pm i \\
1
\end{array}\right)
$$

For your edification, if we had to solve for the $\pm i$ eigenvectors we would do it by elimination
too, of course. For $\lambda_{2}=i$: $A-i I=\left(\begin{array}{ccc}1-i & -1 & 1 \\ 1 & -i & 0 \\ 0 & 1 & -i\end{array}\right) \rightarrow\left(\begin{array}{ccc}\boxed{1} & -i & 0 \\ 1-i & -1 & 1 \\ 0 & 1 & -i\end{array}\right) \rightarrow$ $\left(\begin{array}{ccc}\boxed{1} & -i & 0 \\ 0 & \boxed{i} & 1 \\ 0 & 1 & -i\end{array}\right) \rightarrow\left(\begin{array}{ccc}\boxed{1} & -i & 0 \\ 0 & \boxed{i} & 1 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc}\boxed{1} & 0 & 1 \\ 0 & \boxed{1} & -i \\ 0 & 0 & 0\end{array}\right)$, for which the nullspace vector is $\vec{x}_{2}=\left(\begin{array}{c}-1 \\ i \\ 1\end{array}\right)$. For $\lambda_{3}=-i$, the eigenvector is just the complex conjugate $\vec{x}_{3}=\left(\begin{array}{c}-1 \\ -i \\ 1\end{array}\right)$.
(c) We have to expand the initial vector in the eigenvectors (note that the initial vector is \vec{g}_{2}, not \vec{g}_{0}, here). There are several ways to do this. First, we can do this by inspection: you might guess that you have to add \vec{x}_{2} and \vec{x}_{3} to cancel the i factors, and once you guess this the other coefficients are easy:

$$
\vec{g}_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\frac{1}{2}\left[\left(\begin{array}{c}
-1 \\
i \\
1
\end{array}\right)+\left(\begin{array}{c}
-1 \\
-i \\
1
\end{array}\right)\right] .
$$

More explicitly, we can solve the linear system $S \vec{c}=\vec{g}_{2}$ for the coefficients \vec{c}, where S is the matrix of eigenvectors. Via elimination on the augmented matrix, we obtain $\left(\begin{array}{cccc}\boxed{1} & -1 & -1 & 0 \\ 1 & i & -i & 1 \\ 1 & 1 & 1 & 2\end{array}\right) \rightarrow$

$$
\left(\begin{array}{cccc}
\boxed{1} & -1 & -1 & 0 \\
0 & \boxed{1+i} & 1-i & 1 \\
0 & 2 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\boxed{1} & -1 & -1 & 0 \\
0 & \boxed{2} & 2 & 2 \\
0 & 1+i & 1-i & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\boxed{1} & -1 & -1 & 0 \\
0 & \boxed{2} & 2 & 2 \\
0 & 0 & \boxed{-2 i} & -i
\end{array}\right) \text {, where we }
$$ have swapped rows to keep the pivots real (which simplifies the algebra somewhat). The resulting trangular system is easily solved for $\vec{c}=(1,1 / 2,1 / 2)^{T}$.

Common mis-step: Many students correctly wrote out the solution as $A^{k} \vec{g}_{2}=S \Lambda^{k} S^{-1} \vec{g}_{2}$, but then got stuck because they tried to directly compute S^{-1}, which is painful. In linear algebra, explicitly inverting a matrix is usually a mistake, if what we want at the end is a vector! We have emphasized that you instead should solve the linear system (i.e. expand the initial vector in the eigenvectors). (On the other hand, if you just stopped at $S \Lambda^{k} S^{-1}$, you only lost a few points.)

Anothe common mistake: Many studends wrote $A^{k}=S \Lambda^{k} S^{-1}$, but then wrote $S^{-1}=S^{H}$. This is not true unless S is unitary, i.e. it has orthonormal rows. This is not true here, and there is no reason for it to be true since A is not Hermitian or unitary, etc.

To get $\vec{g}_{k+2}=A^{k} \vec{g}_{2}$, we just multiply each eigenvector by λ^{k}, and take the third row to get f_{k} :

$$
f_{k}=1+\frac{1}{2}\left[i^{k}+(-i)^{k}\right]=1+\cos (k \pi / 2)
$$

(This is just the sequence $2,1,0,1,2,1,0,1,2,1, \ldots$ repeated over and over.)
(d) No, because all of the eigenvalues have $|\lambda|=1$, hence their powers don't blow up. (However, as one may check, the matrix is not unitary.)

3 (30 pts.) (a) Suppose $A=e^{i B}$ where B is Hermitian; what is $A^{H} A$? Hence A is a matrix.
(b) For the recurrence relation $\overrightarrow{f_{k+1}}=e^{i B} \overrightarrow{f_{k}}$, what is $\left\|\overrightarrow{f_{k}}\right\|^{2} /\left\|\overrightarrow{f_{0}}\right\|^{2}$? [Hint: part (a) is useful.]
(c) Compute $\overrightarrow{f_{k}}$ explicitly [i.e. no matrix exponentials or powers of matrices] for $B=\left(\begin{array}{cc}-3 & 4 \\ 4 & 3\end{array}\right)$ and $\overrightarrow{f_{0}}=\binom{1}{0}$. The eigenvectors of this B are $\vec{x}_{1}=\binom{1}{2}$ and $\vec{x}_{2}=\binom{2}{-1}$ with eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-5$, respectively.
(d) Check that your answer from (b) is true for your answer from (c).

Solution:

(a) $A^{H}=e^{(i B)^{H}}=e^{-i B^{H}}=e^{-i B}$. Hence $A^{H} A=e^{-i B} e^{i B}=e^{-i B+i B}=e^{0}=I$. (Note that $i B$ and $-i B$ obviously commute, which is why we can combine the exponentials like this.) Hence A is unitary.

Common mistake: many students forgot to take the complex conjugate, i.e. forgetting to replace i with $-i$.
(b) As in class, $\overrightarrow{f_{k}}=A^{k} \overrightarrow{f_{0}}$. Hence

$$
\left\|\overrightarrow{f_{k}}\right\|^{2}=\vec{f}_{k}^{H} \vec{f}_{k}=\vec{f}_{0}^{H}\left(A^{k}\right)^{H} A^{k} \vec{f}_{0}=\vec{f}_{0}^{H} A^{H} A^{H} \cdots A^{H} A \cdots A A \vec{f}_{0}=\vec{f}_{0}^{H} \vec{f}_{0}=\left\|\vec{f}_{0}\right\|^{2}
$$

[using the result from part (a) to cancel the $A^{H} A$ factors in the middle], and hence $\left\|\overrightarrow{f_{k}}\right\|^{2} /\left\|\overrightarrow{f_{0}}\right\|^{2}=$ 1. Equivalently, the product of unitary matrices is unitary, so A^{k} is unitary, so it preserves lengths.
(c) We first have to expand the initial condition in terms of the eigenvectors. This is easy
enough to do by inspection here:

$$
\overrightarrow{f_{0}}=\binom{1}{0}=\frac{\binom{1}{2}+2\binom{2}{-1}}{5}
$$

Alternatively, we could solve the 2×2 system $\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{0}$ for the coefficients $c_{1}=1 / 5$ and $c_{2}=2 / 5$. Or, we could use the orthogonality to get $c_{j}=\vec{f}_{0} \cdot \vec{x}_{j} /\left\|\vec{x}_{j}\right\|^{2}$. Once this is done, we use the fact that $\overrightarrow{f_{k}}=A^{k} \overrightarrow{f_{0}}=e^{i B k} \overrightarrow{f_{0}}$ to multiply each eigenvector by $e^{i \lambda k}$:

$$
\vec{f}_{k}=\frac{\binom{1}{2} e^{i 5 k}+2\binom{2}{-1} e^{-i 5 k}}{5}=\frac{\binom{e^{i 5 k}+4 e^{-i 5 k}}{2 e^{i 5 k}-2 e^{-i 5 k}}}{5} .
$$

(d) This is simplest if we don't combine the terms above and instead use the orthogonality to eliminate the $\vec{x}_{1} \cdot \vec{x}_{2}$ and $\vec{x}_{2} \cdot \vec{x}_{1}$ cross terms:

$$
\left\|\vec{f}_{k}\right\|^{2}=\vec{f}_{k}^{H} \vec{f}_{k}=\frac{\left\|\binom{1}{2}\right\|^{2}\left|e^{i 5 k}\right|^{2}+2^{2}\left\|\binom{2}{-1}\right\|^{2}\left|e^{-i 5 k}\right|^{2}}{5^{2}}=\frac{5+4 \cdot 5}{25}=1=\left\|\vec{f}_{0}\right\|^{2}
$$

Alternatively, we can explicitly write out

$$
\begin{aligned}
\left|e^{i 5 k}+4 e^{-i 5 k}\right|^{2}+\left|2 e^{i 5 k}-2 e^{-i 5 k}\right|^{2} & =\left(e^{i 5 k}+4 e^{-i 5 k}\right)\left(e^{-i 5 k}+4 e^{i 5 k}\right)+\left(2 e^{i 5 k}-2 e^{-i 5 k}\right)\left(2 e^{-i 5 k}-2 e^{i 5 k}\right) \\
& =\left(1+4 e^{-i 10 k}+4 e^{i 10 k}+16\right)+\left(4-4 e^{-i 10 k}-4 e^{i 10 k}+4\right) \\
& =25,
\end{aligned}
$$

so again $\left\|\overrightarrow{f_{k}}\right\|^{2}=25 / 25=1=\left\|\overrightarrow{f_{0}}\right\|^{2}$.

4 (20 pts.) Some 3×3 real matrix A has eigenvalues $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=2$, with the corresponding eigenvectors $\vec{x}_{1}=(1,0,0)^{T}, \vec{x}_{2}=(0,1,2)^{T}$, and $\vec{x}_{3}=(0,1,1)^{T}$.
(a) Give a basis for: (i) the nullspace $N(A)$, (ii) the column space $C(A)$, and (iii) the row space $C\left(A^{H}\right)$.
(b) Find all solutions \vec{x} to $A \vec{x}=\vec{x}_{2}-3 \vec{x}_{3}$.
(c) Is A (i) real-symmetric, (ii) orthogonal, (iii) Markov, or (iv) none of the above?

Solution:

(a) The nullspace is just the span of the $\lambda=0$ eigenvector \vec{x}_{1}. If we act A on any vector, we only get multiples of the $\lambda \neq 0$ eigenvectors, so $C(A)$ is the span of \vec{x}_{2} and \vec{x}_{3}. The row space is the orthogonal complement of the nullspace, and here this is spanned by (e.g.) the vectors $(0,1,0)^{T}$ and $(0,0,1)^{T}$.
(b) The right hand side is clearly in the column space. Since we have expanded the right hand side in the $\lambda \neq 0$ eigenvectors, we can get a particular solution just by dividing them by the corresponding eigenvalues: remember, A acts just like a number on these vectors. Hence a particular solution is $\vec{x}_{p}=\vec{x}_{2} / 1-3 \vec{x}_{3} / 2=(0,-1 / 2,1 / 2)^{T}$. To get all the solutions we must add the nullspace, obtaining $\vec{x}=(a,-1 / 2,1 / 2)^{T}$ for any constant a.

Equivalently, expand \vec{x} in the eigenvectors, $\vec{x}=a \vec{x}_{1}+b \vec{x}_{2}+c \vec{x}_{3}$, and plug in to $A \vec{x}=$ $b \vec{x}_{2}+2 c \vec{x}_{3}=\vec{x}_{2}-3 \vec{x}_{3}$ to find $a=$ arbitrary, $b=1$, and $c=-3 / 2$.
(c) (iv) None of the above. It's clearly not Markov or orthogonal since there is a $\lambda=2$ eigenvalue. Although the eigenvalues are real, it's not real-symmetric since the eigenvectors are not orthogonal.

