
18.06 Professor Johnson Quiz 3 December 3, 2007

SOLUTIONS

1 (20 pts.) True or false. Explain why if false, or give an example if true.

(a) There exist matrices A 6= 0 that are simultaneously Hermitian (A =

AH) and unitary (AH = A−1).

(b) There exist matrices A 6= 0 that are simultaneously anti-Hermitian

(A = −AH) and unitary (AH = A−1).

(c) There exist matrices A 6= 0 that are simultaneously Hermitian (A =

AH) and anti-Hermitian (A = −AH).

(d) There exist matrices A that are simultaneously Hermitian and Markov.

Solution:

(a) True. For example, A = I,−I, or more generally, A = SΛSH , where S is any unitary

matrix, and Λ is a diagonal matrix whose diagonal entries are ±1.

(b) True. For example, the 1× 1 matrix A = i,−i, or more generally, A = SΛSH , where S

is any unitary matrix, and Λ is a diagonal matrix whose diagonal entries are ±i.

(c) False. If A is Hermitian then all the eigenvalues are real, and if it is anti-Hermitian

then the eigenvalues are imaginary, and the eigenvalues cannot be at the same time real and

imaginary unless they are zero. The only Hermitian matrix whose eigenvalues are all 0 is

the zero matrix, but A 6= 0.

(d) True, e.g. A = I. All 2× 2 examples are of the form

 a 1− a

1− a a

 with 0 ≤ a ≤ 1.



2 (30 pts.) Suppose we form a sequence of real numbers fk defined by the recurrence

fk+1 = fk − fk−1 + fk−2, starting with the initial conditions f0 = 2, f1 = 1

and f2 = 0.

(a) Define a 3-component vector ~gk = (fk, fk−1,fk−2)
T and a 3× 3 matrix

A so that the recurrence is ~gk+1 = A~gk.

(b) If you constructed A correctly, the three eigenvalues should be 1 and

±i [I’m giving you these so you don’t have to solve a cubic equation],

and the latter two eigenvectors should be (−1,±i, 1)T . Check that

you have these ±i eigenvalues and eigenvectors, and find the λ = 1

eigenvector.

(c) Give an explicit formula for fk for any k. (By “explicit,” I mean

involving elementary arithmetic and powers of complex numbers only.

Formulas involving Ak are not acceptable.)

(d) Is there any choice of initial conditions that will make |fk| diverge as

k →∞? Explain.

Solution

(a) This recurrence gives A =


1 −1 1

1 0 0

0 1 0

. That is, the first row of A gives fk+1 =

fk − fk−1 + fk−2, while the second and third rows of A just give fk = fk and fk−1 = fk−1

(copying the first and second rows of ~gk to the second and third rows of ~gk+1.

(b) We need to find the nullspace of A− λI, via elimination to obtain row-reduced echelon

form. In each case, it will be convenient to swap the first two rows, which will make the first

pivot 1 and will not change the nullspace. For λ1 = 1:

A−I =


0 −1 1

1 −1 0

0 1 −1

 →


1 −1 0

0 −1 1

0 1 −1

 →


1 −1 0

0 1 −1

0 0 0

 →


1 0 −1

0 1 −1

0 0 0


2



for which the nullspace vector is ~x1 =


1

1

1

.

To check the provided ±i eigenvectors, we just multiply them by A:
1 −1 1

1 0 0

0 1 0



−1

±i

1

 =


−1∓ i + 1

−1

±i

 =


∓i

−1

±i

 = ±i


−1

±i

1

 .

For your edification, if we had to solve for the ±i eigenvectors we would do it by elimination

too, of course. For λ2 = i: A − iI =


1− i −1 1

1 −i 0

0 1 −i

 →


1 −i 0

1− i −1 1

0 1 −i

 →


1 −i 0

0 i 1

0 1 −i

 →


1 −i 0

0 i 1

0 0 0

 →


1 0 1

0 1 −i

0 0 0

 , for which the nullspace vector

is ~x2 =


−1

i

1

. For λ3 = −i, the eigenvector is just the complex conjugate ~x3 =


−1

−i

1

.

(c) We have to expand the initial vector in the eigenvectors (note that the initial vector is

~g2, not ~g0, here). There are several ways to do this. First, we can do this by inspection: you

might guess that you have to add ~x2 and ~x3 to cancel the i factors, and once you guess this

the other coefficients are easy:

~g2 =


0

1

2

 =


1

1

1

 +
1

2



−1

i

1

 +


−1

−i

1


 .

More explicitly, we can solve the linear system S~c = ~g2 for the coefficients ~c, where S is the

matrix of eigenvectors. Via elimination on the augmented matrix, we obtain


1 −1 −1 0

1 i −i 1

1 1 1 2

 →
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
1 −1 −1 0

0 1 + i 1− i 1

0 2 2 2

 →


1 −1 −1 0

0 2 2 2

0 1 + i 1− i 1

 →


1 −1 −1 0

0 2 2 2

0 0 −2i −i

, where we

have swapped rows to keep the pivots real (which simplifies the algebra somewhat). The

resulting trangular system is easily solved for ~c = (1, 1/2, 1/2)T .

Common mis-step: Many students correctly wrote out the solution as Ak~g2 = SΛkS−1~g2,

but then got stuck because they tried to directly compute S−1, which is painful. In linear

algebra, explicitly inverting a matrix is usually a mistake, if what we want at the end is a

vector! We have emphasized that you instead should solve the linear system (i.e. expand

the initial vector in the eigenvectors). (On the other hand, if you just stopped at SΛkS−1,

you only lost a few points.)

Anothe common mistake: Many studends wrote Ak = SΛkS−1, but then wrote S−1 = SH .

This is not true unless S is unitary, i.e. it has orthonormal rows. This is not true here, and

there is no reason for it to be true since A is not Hermitian or unitary, etc.

To get ~gk+2 = Ak~g2, we just multiply each eigenvector by λk, and take the third row to get

fk:

fk = 1 +
1

2

[
ik + (−i)k

]
= 1 + cos(kπ/2).

(This is just the sequence 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, . . . repeated over and over.)

(d) No, because all of the eigenvalues have |λ| = 1, hence their powers don’t blow up.

(However, as one may check, the matrix is not unitary.)
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3 (30 pts.) (a) Suppose A = eiB where B is Hermitian; what is AHA? Hence A is a

matrix.

(b) For the recurrence relation ~fk+1 = eiB ~fk, what is ‖~fk‖2/‖~f0‖2? [Hint:

part (a) is useful.]

(c) Compute ~fk explicitly [i.e. no matrix exponentials or powers of matri-

ces] for B =

−3 4

4 3

 and ~f0 =

1

0

. The eigenvectors of this B are

~x1 =

1

2

 and ~x2 =

 2

−1

 with eigenvalues λ1 = 5 and λ2 = −5,

respectively.

(d) Check that your answer from (b) is true for your answer from (c).

Solution:

(a) AH = e(iB)H
= e−iBH

= e−iB. Hence AHA = e−iBeiB = e−iB+iB = e0 = I. (Note that

iB and −iB obviously commute, which is why we can combine the exponentials like this.)

Hence A is unitary.

Common mistake: many students forgot to take the complex conjugate, i.e. forgetting to

replace i with −i.

(b) As in class, ~fk = Ak ~f0. Hence

‖~fk‖2 = ~fH
k

~fk = ~fH
0 (Ak)HAk ~f0 = ~fH

0 AHAH · · ·AHA · · ·AA~f0 = ~fH
0

~f0 = ‖~f0‖2

[using the result from part (a) to cancel the AHA factors in the middle], and hence ‖~fk‖2/‖~f0‖2 =

1. Equivalently, the product of unitary matrices is unitary, so Ak is unitary, so it preserves

lengths.

(c) We first have to expand the initial condition in terms of the eigenvectors. This is easy
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enough to do by inspection here:

~f0 =

 1

0

 =

 1

2

 + 2

 2

−1


5

.

Alternatively, we could solve the 2× 2 system

 1 2

2 −1

  c1

c2

 =

 1

0

 for the coeffi-

cients c1 = 1/5 and c2 = 2/5 . Or, we could use the orthogonality to get cj = ~f0 · ~xj/‖~xj‖2.

Once this is done, we use the fact that ~fk = Ak ~f0 = eiBk ~f0 to multiply each eigenvector by

eiλk:

~fk =

 1

2

 ei5k + 2

 2

−1

 e−i5k

5
=

 ei5k + 4e−i5k

2ei5k − 2e−i5k


5

.

(d) This is simplest if we don’t combine the terms above and instead use the orthogonality

to eliminate the ~x1 · ~x2 and ~x2 · ~x1 cross terms:

‖~fk‖2 = ~fH
k

~fk =

∥∥∥∥∥∥
 1

2

∥∥∥∥∥∥
2 ∣∣ei5k

∣∣2 + 22

∥∥∥∥∥∥
 2

−1

∥∥∥∥∥∥
2 ∣∣e−i5k

∣∣2
52

=
5 + 4 · 5

25
= 1 = ‖~f0‖2.

Alternatively, we can explicitly write out

|ei5k + 4e−i5k|2 + |2ei5k − 2e−i5k|2 = (ei5k + 4e−i5k)(e−i5k + 4ei5k) + (2ei5k − 2e−i5k)(2e−i5k − 2ei5k)

= (1 + 4e−i10k + 4ei10k + 16) + (4− 4e−i10k − 4ei10k + 4)

= 25,

so again ‖~fk‖2 = 25/25 = 1 = ‖~f0‖2.
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4 (20 pts.) Some 3 × 3 real matrix A has eigenvalues λ1 = 0, λ2 = 1, and λ3 = 2,

with the corresponding eigenvectors ~x1 = (1, 0, 0)T , ~x2 = (0, 1, 2)T , and

~x3 = (0, 1, 1)T .

(a) Give a basis for: (i) the nullspace N(A), (ii) the column space C(A),

and (iii) the row space C(AH).

(b) Find all solutions ~x to A~x = ~x2 − 3~x3.

(c) Is A (i) real-symmetric, (ii) orthogonal, (iii) Markov, or (iv) none of

the above?

Solution:

(a) The nullspace is just the span of the λ = 0 eigenvector ~x1. If we act A on any vector,

we only get multiples of the λ 6= 0 eigenvectors, so C(A) is the span of ~x2 and ~x3. The row

space is the orthogonal complement of the nullspace, and here this is spanned by (e.g.) the

vectors (0, 1, 0)T and (0, 0, 1)T .

(b) The right hand side is clearly in the column space. Since we have expanded the right

hand side in the λ 6= 0 eigenvectors, we can get a particular solution just by dividing them

by the corresponding eigenvalues: remember, A acts just like a number on these vectors.

Hence a particular solution is ~xp = ~x2/1− 3~x3/2 = (0,−1/2, 1/2)T . To get all the solutions

we must add the nullspace, obtaining ~x = (a,−1/2, 1/2)T for any constant a.

Equivalently, expand ~x in the eigenvectors, ~x = a~x1 + b~x2 + c~x3, and plug in to A~x =

b~x2 + 2c~x3 = ~x2 − 3~x3 to find a = arbitrary, b = 1, and c = −3/2.

(c) (iv) None of the above. It’s clearly not Markov or orthogonal since there is a λ = 2

eigenvalue. Although the eigenvalues are real, it’s not real-symmetric since the eigenvectors

are not orthogonal.
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