Grading

Please circle your recitation: \qquad
1

2

3
\qquad
4
\qquad
5

Total:

1 (20 pts.) Let $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
(a) Show that $A=\mathbf{v v}^{T}$ is a symmetric 3×3 matrix. What is the rank of A?
(b) Find the projection matrix P onto the nullspace of A.
(c) Calculate $P A$ and $A P$.
(d) Show that for any symmetrix $n \times n$ matrix B, and the projection matrix Q onto the nullspace of G, we have $Q A=A Q=0$.

This page intentionally blank.

2 (20 pts.) Given 4 points $(t, b)=(0,1),(1,2),(2,2)$ and $(3,3)$.
(a) Use the least square methods to find a line $b=C+D t$ which best fits the four points.
(b) Find equations (do not solve) for the coefficients $C^{\prime}, D^{\prime}, E^{\prime}$ in $b=$ $C^{\prime}+D^{\prime} t+E^{\prime} t^{2}$, the parabola which best fits the four points above.

This page intentionally blank.

3 (16 pts.) Fill in the blanks below.
(a) The nullspace of $A B$ contains the nullspace of \qquad
(b) Let P be the projection matrix to the column space of a matrix A, then $I-P$ is the projection matrix to \qquad
(c) The projection of the vector $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$ onto the nullspace of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 4\end{array}\right)$ is \square.
(d) Suppose A is an $m \times n$ matrix, and the row space of A is n dimensional, then its nullspace is \qquad dimensional.
(e) Let $\hat{\mathbf{x}}$ be the least-squares solution to $A \mathbf{x}=\mathbf{b}$. Then $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the \qquad of A.
(f) Let A be the $m \times n$ (edge-node) incidence matrix of a connected graph with n vertices and m edges. Then the left nullspace of A has dimension
\qquad
(g) Suppose A is a 5×5 matrix, and $\operatorname{det}(A)=2$. Then $\operatorname{det}\left(2 A A^{T}\right)=$
\qquad
(h) If A is an arbitrary orthogonal matrix, the possible values of $\operatorname{det}(A)$ are \qquad

4 (16 pts.) (a) Compute the determinant of the matrix $\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)$.
(b) Suppose A is any antisymmetric $n \times n$ matrix, and n is odd. Find the determinant of A.

This page intentionally blank.

5 (28 pts.) Let $A=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4\end{array}\right)$.
(a) Do Gram-Schemidt, but without normalizing lengths, to get an orthogonal but not orthonormal basis B for $C(A)$.
(b) Compute the (4-dimensional) volume of the 2 parallelepipeds with edges given by the columns of A and the columns of B.
(c) For an arbitrary $n \times n$ matrix A, write down this "unnormalized" GramSchmidt process in terms of A multiplied by a sequence of matrices (similar to the QR decomposition), and use it to prove that this process perserves the volumn.
(d) Show that for any orthogonal matrix $B, B^{T} B$ is a diagonal matrix, then use this to derive that $\operatorname{det}(B)$ equals the product of the lengths of its column vectors.

This page intentionally blank.

