Your PRINTED name is: _____

				Grading
Please circle your recitation:				
(1)	T 10	2-131	B. Mares	1
(2)	T 10	2-132	A. Barakat	2
(3)	T 11	2-132	A. Barakat	
(4)	T 11	2-131	B. Lehmann	
(5)	T 12	2-132	A. Spiridonov	3
(6)	T 12	2-131	B. Lehmann	4
(7)	Τ1	2-131	A. Spiridonov	
(8)	T 2	2-131	Y. Lekili	5
(9)	T 2	4-159	Z. Wang	
(10)	Т3	2-131	Y. Lekili	Total:

1 (20 pts.) Let
$$\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
.

- (a) Show that $A = \mathbf{v}\mathbf{v}^T$ is a symmetric 3×3 matrix. What is the rank of A?
- (b) Find the projection matrix P onto the **nullspace** of A.
- (c) Calculate PA and AP.
- (d) Show that for any symmetrix $n \times n$ matrix B, and the projection matrix Q onto the nullspace of G, we have QA = AQ = 0.

- **2** (20 pts.) Given 4 points (t, b) = (0, 1), (1, 2), (2, 2) and (3, 3).
 - (a) Use the least square methods to find a line b = C + Dt which best fits the four points.
 - (b) Find equations (**do not solve**) for the coefficients C', D', E' in $b = C' + D't + E't^2$, the parabola which best fits the four points above.

- **3** (16 pts.) Fill in the blanks below.
 - (a) The nullspace of *AB* contains the nullspace of _____.
 - (b) Let P be the projection matrix to the column space of a matrix A, then I - P is the projection matrix to _____.
 - (c) The projection of the vector $\begin{pmatrix} 1\\ 3\\ 1 \end{pmatrix}$ onto the nullspace of the matrix $\begin{pmatrix} 1 & 2 & 3\\ 0 & 2 & 4\\ 0 & 0 & 4 \end{pmatrix}$ is _____.
 - (d) Suppose A is an $m \times n$ matrix, and the row space of A is n dimensional, then its nullspace is ______ dimensional.
 - (e) Let $\hat{\mathbf{x}}$ be the least-squares solution to $A\mathbf{x} = \mathbf{b}$. Then $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to the ______ of A.
 - (f) Let A be the $m \times n$ (edge-node) incidence matrix of a connected graph with n vertices and m edges. Then the left nullspace of A has dimension
 - (g) Suppose A is a 5 × 5 matrix, and det(A) = 2. Then det($2AA^T$) =
 - (h) If A is an arbitrary orthogonal matrix, the possible values of det(A) are _____.

4 (16 pts.) (a) Compute the determinant of the matrix $\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$.

(b) Suppose A is any antisymmetric $n \times n$ matrix, and n is odd. Find the determinant of A.

5 (28 pts.) Let
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$
.

- (a) Do Gram-Schemidt, but without normalizing lengths, to get an orthogonal but not orthonormal basis B for C(A).
- (b) Compute the (4-dimensional) volume of the 2 parallelepipeds with edges given by the columns of A and the columns of B.
- (c) For an arbitrary $n \times n$ matrix A, write down this "unnormalized" Gram-Schmidt process in terms of A multiplied by a sequence of matrices (similar to the QR decomposition), and use it to prove that this process perserves the volumn.
- (d) Show that for any orthogonal matrix B, $B^T B$ is a diagonal matrix, then use this to derive that det(B) equals the product of the lengths of its column vectors.