
18.06 Professor Johnson Quiz 1 October 3, 2007

SOLUTIONS

1 (30 pts.) A given circuit network (directed graph) which has an m × n incidence

matrix A (rows = edges, columns = nodes) and a conductance matrix C

[diagonal = inverse of the (positive) resistance of each edge] given by:

A =


0 1 −1

0 1 −1

1 0 −1

1 −1 0

 C =


1/R1 0 0 0

0 1/R2 0 0

0 0 1/R3 0

0 0 0 1/R4

 .

Suppose the unknowns are the vector v of voltages at each node, and you

are given a vector d of applied voltage drops across each edge (e.g. if you

connect a battery to each edge). In this case, Kirchhoff’s laws plus Ohm’s

law gives the equation:

AT CAv = AT Cd.

(a) Sketch the network, labelling each edge from 1 to 4 corresponding to

each row of A, and each node from ① to ③ corresponding to each

column of A, and put an arrow to show the direction of each edge.

(b) Is AT CAv = AT Cd always solvable for all d? Why or why not? [You

can use the fact, from class, that rank(AT CA) = rank(A) = n − 1.

Hint: think about the subspaces; little or no calculation is necessary.

This is not the same as whether AT CAv = s is solvable for all s.]

(c) Solve for v when C = I (all resistances = 1) and d =
(
5 0 0 0

)T

.

To get a unique solution, set the voltage on node 1 to v1 = 0 (“ground”)—

this simplifies life to a 3× 2 matrix problem, since you then only have

2 unknowns v2 and v3. [Recall that the null space of A is the span of(
1 1 1

)T

, so we can add any constant to the solutions.]



(d) For the same d as in (c), what is the minimum value (minimum over

all v) of ‖Av − d‖2?

Solution:
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(b) Yes.

Since rank(AT CA) = rank(A) = n − 1, and rank(AT CA) ≤ rank(AT C) ≤ rank(AT ) =

rank(A), we see that rank(AT CA) = rank(AT C). Since the column space of AT C contains

the column space of AT CA, and both have the same dimension, we see that the two column

space are the same. Thus for any d, AT Cd lies in the column space of AT CA. In other

words, the equation is always solvable.

Alternatively, it is also sufficient to say that the column space C(AT C) is clearly at least

contained in C(AT ) = C(AT CA), with the latter equality because C(AT ) and C(AT CA)

have the same dimension [rank(AT CA) = rank(A) = rank(AT )] and C(AT CA) ⊆ C(AT ).

(Recall that C(AB) ⊆ C(A) for any A and B, since ABx is made of the columns of A.)

Common errors: Many students wrote that, since AT CA is singular, there isn’t always a

solution—this is incorrect because the right-hand side is not an arbitrary vector, it is only

vectors AT Cd in C(AT C). Several students wrote that we must have Av = d, which is

not true since AT C is not invertible (or even square). Many students wrote that, if you
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ignore the C, this is just like a least-squares problem and least-squares problems are always

solvable—this is on the right track (the AT on the right-hand side is truly the key here), but

the least-squares problems we’ve studied were only when A has full column rank, which isn’t

true here.

(c) The equation becomes AT Av = ATd. We calculate:

AT A =


2 −1 −1

−1 3 −2

−1 −2 3

 , ATd =


0

5

−5

 ,

so we can solve by elimination:
2 −1 −1 0

−1 3 −2 5

−1 −2 3 −5

 →


2 −1 −1 0

0 5/2 −5/2 5

0 −5/2 5/2 −5

 →


2 −1 −1 0

0 5/2 −5/2 5

0 0 0 0

 →


2 −1 −1 0

0 1 −1 2

0 0 0 0

 ,

so the general solution is v =
(
a + 1 a + 2 a

)T

, where a is an arbitrary number (the

multiple of the nullspace vector). To get v1 = 0, let a = −1, and the unique solution is:

v =


0

1

−1

 .

A faster way: We can set v1 = 0 immediately after constructing AT A, equivalent to deleting

the first column (which is multiplied by zero), leaving us with the 3× 2 problem:
−1 −1 0

3 −2 5

−2 3 −5

 →


−1 −1 0

0 −5 5

0 5 −5

 →


−1 −1 0

0 −5 5

0 0 0


which has the solution v3 = −1, v2 = 1 as above.
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Another fast way: if we set v1 = 0 at the very beginning, i.e. delete the first column of A to

obtain a 4× 2 matrix, then AT A =

 3 −2

−2 3

 and ATd =

 5

−5

, and the solution is the

same as above.

(d) In order to minimize ‖Av − d‖2, we would solve AT Av = ATd, but this is precisely

what we already did in part (c)! So, the minimum value is at v =
(
0 1 −1

)T

from above,

and is given by:

∥∥∥∥∥∥∥∥∥A


0

1

−1

− d

∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥


2

2

1

−1

−


5

0

0

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

= (−3)2 + 22 + 12 + (−1)2 = 15.
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2 (30 pts.) Fill in the blanks below: (You don’t need to justify your answer.)

(a) The nullspace of AB contains the nullspace of B .

If Bx = 0 then ABx = 0.

(b) Let P be the projection matrix to the row space of a matrix A, then

I − P is the projection matrix to N(A) .

Reason: I − P is the projection onto the orthogonal complement, and

the orthogonal complement of the row space is the nullspace.

(c) Suppose A is an m×n matrix, and the row space of A is n dimensional,

then its nullspace is 0 dimensional.

The rank r of A is the dimension of the row space, so r = n, and the

nullspace has dimension n− r = n− n = 0.

(d) Let x̂ be the least-squares solution to Ax = b. Then b−Ax̂ is orthog-

onal to the column space of A.

The least-squares solution solves Ax̂ = Pb, where P is the projection

onto C(A), so b−Ax̂ = b−Pb = (I−P )b, and I−P projects onto the

complement of C(A). Equivalently, the least-squares solution finds the

closest point Ax̂ to b in C(A), so the difference must be perpendicular

to C(A).

(e) If AT = −A (A is antisymmetric), and A is n×n where n is odd, then

det A = 0 . .

Reason: det A = det AT = det(−A) = (−1)n det A = − det A since n

is odd, and the only way to have det A = − det A is if det A = 0.

(f) If A is symmetric and P is the projection matrix onto the nullspace

N(A), then PA = 0 .

Since A is symmetric, N(A) = N(AT ) = C(A)⊥, so P projects onto

the orthogonal complement of C(A). Thus, PA = 0 since P projects

every column of A to zero.
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3 (12 pts.) Construct an example of a least-square curve-fitting problem where the

solution (the least-square fit parameters) is not unique. (You need not solve

it, just write down the Ax = b equations that you would solve by least-

squares to minimize ‖Ax− b‖2.)

Solution: The solution is not unique if the matrix A is not of full column rank. (Problem

1(c) is an example of this type.) There are many possible examples.

For example, you could have more unknowns than data points. e.g., you could be fitting to

a line C +Dt, but only have a single point (t1, b1)—obviously, a single point is not enough to

determine a line uniquely. In terms of matrices, A =
(
1 t1

)
, x =

(
C D

)T

, and b = (b1),

which obviously does not have full column rank: there are more columns than rows in A!

Alternatively, you could be fitting a line C + Dt to multiple points (t1, b1), (t1, b2), (t1, b3)

etcetera with the same t coordinate—this is enough information to determine C or D but

not both. In this case you get a matrix equation of the form:
1 t1

1 t1
...

...

1 t1


C

D

 =


b1

b2

...

bm

 ,

which obviously does not have full column rank: (column 2) = t1(column 1) in A.

You could also construct an example where your fit parameters are not really independent,

regardless of the data. For example, if you are fitting to C + Dt + E(3t − 1), in which

case E does not add any information because 3t − 1 is a linear combination of C and Dt.

Correspondingly, the third column of A will be three times the second column minus the

first column.

Perhaps the most trivial example of all is where you have no data points whatsoever, in

which case there is no information to constrain the fit. In terms of matrices, though, this is

a bit too weird because it would correspond to a matrix A with zero rows, and we usually

consider only matrices with positive sizes.
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4 (28 pts.) Let A =


0 0 0 1

0 0 2 2

0 3 3 3

4 4 4 4

. Ordinary Gram-Schmidt would take the columns

of A and produce an orthonormal basis Q with C(A) = C(Q). In this

problem, we will modify that process and see what happens.

In particular, suppose that we proceed as in Gram-Schmidt, but we omit the

normalization steps—we construct a basis of orthogonal vectors spanning

C(A) but with lengths 6= 1, by subtracting the projections as in Gram-

Schmidt but skipping the division by the lengths. Let’s call this “unnor-

malized Gram-Schmidt.”

(a) Do “unnormalized Gram-Schmidt” on A to get an orthogonal but not

orthonormal basis B for C(A).

(b) Compute two the (4-dimensional) volumes of the two parallelepipeds

with edges given by the columns of A and the columns of B.

Recall how ordinary Gram-Schmidt corresponded to multiplying A by a

sequence of matrices, leading to the QR decomposition. Now, we want to

look at unnormalized Gram-Schmidt in the same way, in order to see what it

does to the volume (determinant). The next two parts refer to an arbitrary

n×n matrix A with independent columns, not the 4× 4 matrix from parts

(a) and (b).

(c) For an arbitrary n × n matrix A with (independent) columns a1, a2,

etcetera, write down the matrix M2 that you would multiply by A

in the first step of unnormalized Gram-Schmidt to make the second

column orthogonal to the first. What is det M2?

(d) Argue that the matrices M3, M4, etcetera that you would multiply by

in subsequent steps of unnormalized Gram-Schmidt all have the same
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determinant as M2. Therefore, the determinant of the final matrix B

after unnormalized Gram-Schmidt is det(A) ?

Solution:

(a) Unnormalized Gram-Schmidt:

b1 = a1 =
(
0 0 0 4

)T

,

b2 = a2 −
bT

1 a2

bT
1 b1

b1 =
(
0 0 3 0

)T

,

b3 = a3 −
bT

1 a3

bT
1 b1

b1 −
bT

2 a3

bT
2 b2

b2 =
(
0 2 0 0

)T

,

b4 = a4 −
bT

1 a4

bT
1 b1

b1 −
bT

2 a4

bT
2 b2

b2 −
bT

3 a4

bT
3 b3

b3 =
(
1 0 0 0

)T

.

Note that we must subtract off the projections onto the b vectors, not the a vectors—the

b vectors span the same space, but are much simpler to project onto because they are

orthogonal.

(Why does this work? When creating b3, for example, we should subtract off the projection

of a3 onto the span of a1 and a2, which is some projection matrix. For ordinary Gram-

Schmidt, where we have orthonormal vectors q, the projection matrix simplifies to QQT and

we can just subtract of projections onto each q individually. Here, the projection onto the

span of the previous b vectors simplifies similarly. One way to think of this is just to realize

that qk = bk/‖bk‖, and therefore we can apply the ordinary Gram-Schmidt step with this

substitution, skipping the normalization. A more complicated way is to realize that BT B,

while not the identity as for Q, is a diagonal matrix, and this leads to the same simplified

result.)

Thus, an orthogonal but not orthonormal basis B for C(A) is
0 0 0 1

0 0 2 0

0 3 0 0

4 0 0 0

 .
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(b) The volume of the parallelepiped with edges given by the columns of A is just the

determinant (or rather, its absolute value, but here the determinant is positive anyway):

det(A) = det


0 0 0 1

0 0 2 2

0 3 3 3

4 4 4 4

 = (−1)2 det


4 4 4 4

0 3 3 3

0 0 2 2

0 0 0 1

 = 4 · 3 · 2 · 1 = 24,

where we have rearranged A into an upper-triangular matrix via two row swaps, and the

determinant is then the product of the diagonals. The volume of the parallelepiped with

edges given by the columns of B is similarly:

det(B) = det


0 0 0 1

0 0 2 0

0 3 0 0

4 0 0 0

 = (−1)2 · 4 · 3 · 2 · 1 = 24 = det(A).

(c) We should have(
b1 b2 a3 · · · an

)
=

(
a1 a2 a3 · · · an

)
M2.

Notice that we must multiply M2 on the right since we are manipulating columns of A. Since

b1 = a1,b2 = a2 − bT
1 a2

bT
1 b1

b1, we must have

M2 =



1 −bT
1 a2

bT
1 b1

0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Since this is an upper-triangular matrix with 1’s on the diagonal, we have det M2 = 1.

(d) In step k, we only change the vector ak to bk, which is

bk = ak − linear combination of b1, · · · ,bk−1,
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thus the matrix Mk is an upper triangular matrix with diagonal entries 1 (and only nonzero

off-diagonal entries are in the kth column). Therefore, det(Mk) = 1 for all k. This implies,

finally, that det(B) = det(AM2M3 · · ·Mn) = det(A) det(M1) · · · det(Mn) = det(A).
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