Your PRINTED name is: _____

Please circle your recitation:				Grading
(1)	T 10	2-131	B. Mares	
(2)	T 10	2-132	A. Barakat	T
(3)	T 11	2-132	A. Barakat	2
(4)	T 11	2-131	B. Lehmann	
(5)	T 12	2-132	A. Spiridonov	3
(6)	T 12	2-131	B. Lehmann	
(7)	Τ1	2-131	A. Spiridonov	4
(8)	T 2	2-131	Y. Lekili	
(9)	T 2	4-159	Z. Wang	Total:
(10)	Τ3	2-131	Y. Lekili	

 $1~(20~{\rm pts.})$ ~ Find all solutions to the linear system

$$x + 2y + z - 2w = 5$$
$$2x + 4y + z + w = 9$$
$$3x + 6y + 2z - w = 14$$

2 (30 pts.) In class, we learned how to do "downwards" elimination to put a matrix A in upper-triangular (or echelon) form U: not counting row swaps, we subtracted multiples of pivot rows from subsequent rows to put zeros below the pivots, corresponding to multiplying A by elimination matrices.

Instead, we could do elimination "leftwards" by subtracting multiples of pivot columns from leftwards columns, again to get an upper-triangular matrix U. For example, let:

$$A = \begin{pmatrix} 7 & 6 & 4 \\ 6 & 3 & 12 \\ 2 & 0 & 1 \end{pmatrix}$$

We could subtract twice the third column from the first column to eliminate the 2, so that we get zeros to the left of the "pivot" 1 at the lower right.

- (i) Continue this "leftwards" elimination to obtain an upper-triangular matrix U from the A above, and write U in terms of A multiplied by a sequence of matrices corresponding to each leftwards-elimination step.
- (ii) Suppose we followed this process for an arbitrary A (not necessarily square or invertible) to get an echelon matrix U. Which of the column space and null space, if any, are the same between A and U, and why?
- (iii) Is the U that we get by leftwards elimination always the same as the U we get from ordinary downwards elimination? Why or why not?

- 3 (20 pts.) Determine whether the following statements are true or false, and explain your reasoning.
 - (\clubsuit) If $A^2 = A$, then A = 0 or A = I.
 - (\diamond) Ignoring row swaps, any invertible matrix A has a "UL" factorization (as an alternative to LU factorization): A can be written as A = UL where U and L are some upper and lower triangular matrices, respectively.
 - (\bigstar) All the 2 × 2 matrices that commute with $A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}$ (i.e. all 2 × 2 matrices B with AB = BA) form a vector space (with the usual formulas for addition of matrices and multiplication of matrices by numbers).
 - (\heartsuit) There is no 3×3 matrix whose column space equals its nullspace.

4 (30 pts.) The following information is known about an $m \times n$ matrix A:

$$A\begin{pmatrix} 1\\ -2\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 4 \end{pmatrix}, A\begin{pmatrix} 0\\ 2\\ 1\\ 3 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, A\begin{pmatrix} 2\\ 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 5\\ 10 \end{pmatrix}, A\begin{pmatrix} 3\\ 2\\ 0\\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}.$$

(\alpha) Show that the vectors
$$\begin{pmatrix} 1\\ -2\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} 0\\ 2\\ 1\\ 3 \end{pmatrix}, \begin{pmatrix} 2\\ 0\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} 3\\ 2\\ 0\\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3\\ 2\\ 0\\ 0 \\ 0 \end{pmatrix} \text{ form a basis of } \mathbb{R}^4.$$

- (β) Give a matrix C and an invertible matrix B such that $A = CB^{-1}$. (You *don't* have to evaluate B^{-1} or find A explicitly. Just say what B and C are and use them to reason about A in the subsequent parts.)
- (γ) Find a basis for the null space of A^T .
- (δ) What are m, n, and the rank r of A?