Your PRINTED name is: \qquad

Please circle your recitation:

$\begin{array}{lll}\text { (1) T } 10 & \text { 2-131 } & \text { B. Mares }\end{array}$
(2) T 10 2-132 A. Barakat
(3) T 11 2-132 A. Barakat
$\begin{array}{lll}\text { (4) T } 11 & \text { 2-131 } & \text { B. Lehmann }\end{array}$
(5) T 12 2-132 A. Spiridonov
(6) T 12 2-131 B. Lehmann
(7) T $1 \quad$ 2-131 A. Spiridonov
(8) T 2 2-131 Y. Lekili
(9) T 2 4-159 Z. Wang
(10) T 3 2-131 Y. Lekili

Grading

1
\qquad
2

3
\qquad
4
\qquad
Total:

1 (20 pts.) Find all solutions to the linear system

$$
\begin{aligned}
x+2 y+z-2 w & =5 \\
2 x+4 y+z+w & =9 \\
3 x+6 y+2 z-w & =14
\end{aligned}
$$

This page intentionally blank.

2 (30 pts.) In class, we learned how to do "downwards" elimination to put a matrix A in upper-triangular (or echelon) form U : not counting row swaps, we subtracted multiples of pivot rows from subsequent rows to put zeros below the pivots, corresponding to multiplying A by elimination matrices.

Instead, we could do elimination "leftwards" by subtracting multiples of pivot columns from leftwards columns, again to get an upper-triangular matrix U. For example, let:

$$
A=\left(\begin{array}{ccc}
7 & 6 & 4 \\
6 & 3 & 12 \\
2 & 0 & 1
\end{array}\right)
$$

We could subtract twice the third column from the first column to eliminate the 2 , so that we get zeros to the left of the "pivot" 1 at the lower right.
(i) Continue this "leftwards" elimination to obtain an upper-triangular matrix U from the A above, and write U in terms of A multiplied by a sequence of matrices corresponding to each leftwards-elimination step.
(ii) Suppose we followed this process for an arbitrary A (not necessarily square or invertible) to get an echelon matrix U. Which of the column space and null space, if any, are the same between A and U, and why?
(iii) Is the U that we get by leftwards elimination always the same as the U we get from ordinary downwards elimination? Why or why not?

This page intentionally blank.

3 (20 pts.) Determine whether the following statements are true or false, and explain your reasoning.
(母) If $A^{2}=A$, then $A=0$ or $A=I$.
(\diamond) Ignoring row swaps, any invertible matrix A has a "UL" factorization (as an alternative to LU factorization): A can be written as $A=$ $U L$ where U and L are some upper and lower triangular matrices, respectively.
$(\boldsymbol{\oplus})$ All the 2×2 matrices that commute with $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right)$ (i.e. all 2×2 matrices B with $A B=B A$) form a vector space (with the usual formulas for addition of matrices and multiplication of matrices by numbers).
(\bigcirc) There is no 3×3 matrix whose column space equals its nullspace.

This page intentionally blank.

4 (30 pts.) The following information is known about an $m \times n$ matrix A :
$A\left(\begin{array}{c}1 \\ -2 \\ 0 \\ 1\end{array}\right)=\binom{2}{4}, A\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 3\end{array}\right)=\binom{0}{0}, A\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right)=\binom{5}{10}, A\left(\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right)=\binom{1}{2}$.
(α) Show that the vectors $\left(\begin{array}{c}1 \\ -2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right)$ form a basis of \mathbb{R}^{4}.
(β) Give a matrix C and an invertible matrix B such that $A=C B^{-1}$. (You don't have to evaluate B^{-1} or find A explicitly. Just say what B and C are and use them to reason about A in the subsequent parts.)
(γ) Find a basis for the null space of A^{T}.
(δ) What are m, n, and the rank r of A ?

This page intentionally blank.

