
18.06 Professor Johnson Quiz 1 October 3, 2007

SOLUTIONS

1 (20 pts.) Find all solutions to the linear system

x + 2y + z − 2w = 5

2x + 4y + z + w = 9

3x + 6y + 2z − w = 14

Solution:

We perform elimination on the augmented matrix:
1 2 1 −2 5

2 4 1 1 9

3 6 2 −1 14

 →


1 2 1 −2 5

0 0 −1 5 −1

0 0 −1 5 −1

 →


1 2 1 −2 5

0 0 −1 5 −1

0 0 0 0 0

 ,

So y and w are free variables. Thus special solutions to Ax = 0 are given by setting

y = 1, w = 0 and y = 0, w = 1 respectively, i.e.

s1 =


−2

1

0

0

 , s2 =


−3

0

5

1

 .

Moreover, a particular solution to the system is given by setting y = w = 0, i.e.

xp =


4

0

1

0

 .

We could have read these special and particular solutions off even more easily by performing

one more elimination step to get the row-reduced echelon matrix:



→


1 2 0 3 4

0 0 1 −5 1

0 0 0 0 0

 = R.

Notice that the last column gives the values of the pivot variables for the particular solution,

and the free columns give the values of the pivot variables in the special solutions (multiplied

by −1), as was shown in class.

We conclude that the general solutions to this system are given by

x = xp + c1s1 + c2s2 =


−2c1 − 3c2 + 4

c1

5c2 + 1

c2

 ,

where c1 and c2 are arbitrary constants.

2



2 (30 pts.) In class, we learned how to do “downwards” elimination to put a matrix

A in upper-triangular (or echelon) form U : not counting row swaps, we

subtracted multiples of pivot rows from subsequent rows to put zeros below

the pivots, corresponding to multiplying A by elimination matrices.

Instead, we could do elimination “leftwards” by subtracting multiples of

pivot columns from leftwards columns, again to get an upper-triangular

matrix U . For example, let:

A =


7 6 4

6 3 12

2 0 1


We could subtract twice the third column from the first column to eliminate

the 2, so that we get zeros to the left of the “pivot” 1 at the lower right.

(i) Continue this “leftwards” elimination to obtain an upper-triangular

matrix U from the A above, and write U in terms of A multiplied by a

sequence of matrices corresponding to each leftwards-elimination step.

(ii) Suppose we followed this process for an arbitrary A (not necessarily

square or invertible) to get an echelon matrix U . Which of the column

space and null space, if any, are the same between A and U , and why?

(iii) Is the U that we get by leftwards elimination always the same as the

U we get from ordinary downwards elimination? Why or why not?

Solution:

(i) The “leftwards” elimination procedure is

A =


7 6 4

6 3 12

2 0 1

 →


−1 6 4

−18 3 12

0 0 1

 →


35 6 4

0 3 12

0 0 1

 = U,
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where the first step sent (col1) → (col1)−2(col3) and the second step sent (col1) → (col1)+

6(col2). Since these operations are linear combinations of the columns, they correspond to

multiplying on the right by elimination matrices:

U =


35 6 4

0 3 12

0 0 1

 = A


1 0 0

0 1 0

−2 0 1




1 0 0

6 1 0

0 0 1


(One way to get these elimination matrices, as usual, is to do the corresponding operation

on the 3× 3 identity matrix.)

(ii) As above, U = AE (the elimination matrices multiply on the right). It follows that the

column space of A is the same as the column space of U , but the null spaces are different.

Informally, by multiplying E on the right, we modify the input vectors of A (changing the

null space), but the output vectors are still made of columns of A (preserving the column

space). To be more careful, we need the fact that E is invertible (as elimination always is);

otherwise, C(AE) could be a smaller subspace of C(A).

More precisely, since U = AE above, where E are the elimination matrices, any x = Uy =

A(Ey), so any x in C(U) is in C(A). Also vice-versa, since A = UE−1. So C(U) = C(A).

However, if x is in the null space N(U) (i.e. Ux = 0 = AEx), this only means Ex is in

N(A), not x. So the null spaces are different in general (but have the same dimension).

[Compare to the case of ordinary elimination, which preserves N(A) but changes C(A). Left

elimination is equivalent to “upwards” elimination on AT —this preserves the row space of

AT , meaning that the column space of A is preserved etc.]

(iii) The are not the same U in general (although of course there are special cases where

they are the same, such as when A is upper-triangular to start with). There are several ways

to see this.

The simplest way is to give any counterexample: e.g., apply downwards elimination to

A above and you will get a different result. For example, downward elimination never
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changes the upper-left corner (7), but the upper-left corner was changed (to 35) by leftwards

elimination above.

Abstractly, we know from class that downwards elimination always preserves the null space,

whereas we just saw that upwards elimination does not. So, they cannot be the same.

It is not sufficient to simply say that left-elimination does different sorts of operations than

down-elimination—there are lots of problems where you can do a different sequence of oper-

ations and still get the same result. (For example, we could use left elimination to find A−1,

and of course there is only one possible A−1 if it exists at all.)
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3 (20 pts.) Determine whether the following statements are true or false, and explain

your reasoning.

(♣) If A2 = A, then A = 0 or A = I.

(♦) Ignoring row swaps, any invertible matrix A has a “UL” factorization

(as an alternative to LU factorization): A can be written as A =

UL where U and L are some upper and lower triangular matrices,

respectively.

(♠) All the 2 × 2 matrices that commute with A =

1 3

2 0

 (i.e. all

2× 2 matrices B with AB = BA) form a vector space (with the usual

formulas for addition of matrices and multiplication of matrices by

numbers).

(♥) There is no 3× 3 matrix whose column space equals its nullspace.

Solution

(♣) False.

Counterexample: if A =

1 0

0 0

, then A2 = A but A 6= I and A 6= 0.

Another counterexample was given in Pset 2 Problem 8 (a). Note that if we assume A is

invertible, then the only solution is A = I (multiply both sides of A2 = A by A−1), but this

assumption is not warranted here.

(♦) True.

Instead of “downwards” elimination we can also do “upwards” elimination to put A into

lower-triangular form L (possibly with row swaps). In this procedure the corresponding

elimination matrices are upper-triangular, but still multiply on the left (since they are still

row operations), so we get a UL factorization.

Alternatively, the “leftwards” elimination of problem 2 also leads to a UL factorization,

because the (lower-triangular!) elimination matrices multiply on the right to give U = AL−1.
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Technically, however, this process may require column swaps if zeros are encountered in pivot

positions.

(♠) True.

We need to know that linear combinations of vectors stay in the vectors space. If B is a

matrix where AB = BA, then clearly A(cB) = c(AB) = c(BA) = (cB)A for any c. If B′ is

another matrix where AB′ = B′A, then A(B + B′) = AB + AB′ = BA + B′A = (B + B′)A.

(The other properties of a vector space, associativity etcetera, need not be shown since they

are automatic for the usual addition and multiplication operations.)

(♥) True.

Suppose the rank of A is r, then the dimension of column space is r, and the dimension of

null space is 3−r. Obviously no matter r = 0, 1, 2, 3, we always have r 6= 3−r. (Equivalently,

r = 3 − r would imply a fractional rank r = 3/2!) This shows that the two spaces are not

the same, since they must have different dimensions.
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4 (30 pts.) The following information is known about an m× n matrix A:

A


1

−2

0

1

 =

2

4

 , A


0

2

1

3

 =

0

0

 , A


2

0

0

1

 =

 5

10

 , A


3

2

0

0

 =

1

2

 .

(α) Show that the vectors


1

−2

0

1

 ,


0

2

1

3

 ,


2

0

0

1

 ,


3

2

0

0

 form a basis of R4.

(β) Give a matrix C and an invertible matrix B such that A = CB−1.

(You don’t have to evaluate B−1 or find A explicitly. Just say what B

and C are and use them to reason about A in the subsequent parts.)

(γ) Find a basis for the null space of AT .

(δ) What are m, n, and the rank r of A?

Solution:

(α) We are in R4, which is four-dimensional, so any four linearly independent vectors forms

a basis as shown in class. Thus, we just need to show that these four vectors are linearly

independent, which is equivalent to showing that the 4× 4 matrix whose columns are these

vectors has full column rank (null space = {0}). Proceeding by elimination:

B =


1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0

 →


1 0 2 3

0 2 4 8

0 1 0 0

0 3 −1 −3

 →


1 0 2 3

0 2 4 8

0 0 −2 −4

0 0 −7 −15

 →


1 0 2 3

0 2 4 8

0 0 −2 −4

0 0 0 −1

 = U.

Thus, there are four pivots, and hence it has full column rank as desired.
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(β) The provided equations multiply A by four vectors to get four vectors, which by definition

of matrix multiplication (recall the column picture) can be combined into a single equation

where A is multiplied by a matrix with four columns to yield a matrix with four columns:

A


1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0

 =

2 0 5 1

4 0 10 2

 .

Thus if we take

C =

2 0 5 1

4 0 10 2


and

B =


1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0


we have A = CB−1. Since B is precisely the matrix of the basis vectors from part (α), its

invertibility follows from above (it is 4× 4 and has 4 pivots).

(γ) Since A = CB−1, we have

AT = (B−1)T CT = (BT )−1CT .

(As in class, because B is invertible, BT is too.) Just as for elimination (multiplying on the

left by an invertible elimination matrix), the null space is preserved when CT → (BT )−1CT .

[You need not prove this, because the proof is the same as in class. Recall that if CTx = 0

then ATx = 0 from above, and vice versa if we multiply both sides by BT .] That means we

just need to find the null space of CT by elimination:
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2 4

0 0

5 10

1 2

 →


2 4

0 0

0 0

0 0

 ,

in which there is only one free variable, so there is one special solution (the basis of the null

space)

s1 =

−2

1

 ,

or any multiple thereof. (You can also find this special solution by inspection, without

elimination.)

(δ) Since A times a 4-vector is a 2-vector, we must have m = 2 and n = 4. Equivalently,

from part (β) we saw that A was a 2× 4 matrix multiplied by a 4× 4 matrix, giving a 2× 4

matrix. Moreover, from above the dimension of N(AT ) is 1, but this must equal m − r, so

we obtain r = 1.
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