18.06 Problem Set 10 - Solutions

Due Thursday, 29 November 2007 at 4 pm in 2-106.

Problem 1: $(15=5+5+5)$ Take any matrix A of the form $A=B^{H} C B$, where B has full column rank and C is Hermitian and positive-definite.
(a) Show that A is Hermitian.

Solution For any two matrices A_{1} and A_{2}, we have $\left(A_{1} A_{2}\right)^{T}=A_{2}^{T} A_{1}^{T}$ and $\overline{A_{1} A_{2}}=\bar{A}_{1} \bar{A}_{2}$. Combine them, we have $\left(A_{1} A_{2}\right)^{H}=A_{2}^{H} A_{1}^{H}$. Similarly, we have for any $A,\left(A^{H}\right)^{H}=A$.

Now back to the problem. Since C is Hermitian, $C^{H}=C$. So

$$
A^{H}=\left(B^{H} C B\right)^{H}=B^{H} C^{H}\left(B^{H}\right)^{H}=B^{H} C B=A
$$

that is, A is Hermitian.
(b) Show that A is positive-definite by showing that $\mathbf{x} \cdot(A \mathbf{x})>0$ for $\mathbf{x} \neq 0$ (hint: very similar to how we showed that $B^{H} B$ is positive-definite, in class).
Solution Suppose $\mathbf{x} \neq \mathbf{0}$. Since B has full column rank, its nullspace only contains $\mathbf{0}$. So $B \mathbf{x} \neq \mathbf{0}$. So we have

$$
\mathbf{x} \cdot(A \mathbf{x})=\mathbf{x} \cdot\left(B^{H} C B \mathbf{x}\right)=(B \mathbf{x}) \cdot C(B \mathbf{x})>0
$$

the last inequality comes from the fact that C is a positive definite matrix.
(c) Show that $A=D^{H} D$ for some D with full column rank. (Hint: use \sqrt{C} as defined in an earlier problem set.)
Solution We first recall the definition of \sqrt{C}. Since C is Hermitian, it can be decomposed to $C=Q^{H} \Lambda Q$, where Q is unitary and Λ is diagonal whose diagonal entries are eigenvalues of C. Since C is positive definite, the diagonal entries of Λ are all positive, thus the square root matrix $\sqrt{C}=Q^{H} \sqrt{\Lambda} Q$ is well-defined, as we have seen in the earlier problem set. Notice that in particular we have $\sqrt{\Lambda}^{H}=\sqrt{\Lambda}$, thus $\Lambda=(\sqrt{\Lambda})^{2}=\sqrt{\Lambda}^{H} \sqrt{\Lambda}$.

Now we have

$$
A=B^{H} C B=B^{H} Q^{H} \Lambda Q B=B^{H} Q^{H} \sqrt{\Lambda}^{H} \sqrt{\Lambda} Q B
$$

If we denote $D=\sqrt{\Lambda} Q B$, we get immediately $A=D^{H} D$. Finally since both $\sqrt{\Lambda}$ and Q are nonsingular, and B is of full column rank, we see that D is of full column rank.

Problem 2: $(25=4+5+5+5+3+3)$ Consider Poisson's equation $d^{2} f / d x^{2}=g(x)[g(x)$ is given and you want to find $f(x)$]. In lecture, we studied this for the case where f (and g) belongs to the space of real functions on $x \in[0,1]$ with $f(0)=f(1)=0$: we solved it by expanding f and g in Fourier sine series and then inverting each eigenvalue. Now, you should see what happens in the space of functions with zero slope at the boundaries $\left[f^{\prime}(0)=f^{\prime}(1)=0\right]$, where the eigenfunctions of $d^{2} / d x^{2}$ gave the Fourier cosine series.
(a) What is the null space of $d^{2} / d x^{2}$? (Note that you should only consider functions in the vector space, i.e. with zero slope at $x=0$ and $x=1$.)
Solution Suppose

$$
\frac{d^{2} f}{d x^{2}}=\frac{d}{d x}\left(\frac{d f}{d x}\right)=0,
$$

then $\frac{d f}{d x}=a$ is constant. It follows that

$$
f(x)=a x+b
$$

is some linear function. Now since $f^{\prime}(0)=f^{\prime}(1)=0$ and $f^{\prime}(x)=a$, we get $a=0$. So $f(x)=b$ is constant function. So the nullspace of $d^{2} / d x^{2}$ consists all the constant functions. (This is a one dimensional subspace.)
(b) What is the column space of $d^{2} / d x^{2}$, in terms of the Fourier cosine series? That is, if $d^{2} f / d x^{2}=g(x)$, and you write out the cosine series of $g(x)$, what are the possible coefficients? (Hint: start with the cosine series of $f(x)$, and see what happens to it when you take the second derivative - what possible right-hand-sides can you get?)

Solution Suppose

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) .
$$

Then

$$
\frac{d f}{d x}=-\sum_{n=1}^{\infty} n \pi a_{n} \sin (n \pi x)
$$

and thus

$$
\frac{d^{2} f}{d x^{2}}=-\sum_{n=1}^{\infty} n^{2} \pi^{2} a_{n} \cos n \pi x
$$

So the column space of $d^{2} / d x^{2}$ consists all functions whose Fourier cosine series has vanishing first ($0^{t h}$ order) coefficient a_{0}, which by definition is $2 \int_{0}^{1} f(t) d t$. We conclude that the column space consists of functions $f(x)$ with zero integral, i.e. functions whose average value is 0 .
(c) Suppose that $g(x)$ is the function $g(x)=1$ for $x<1 / 2$ and $g(x)=-1$ for $x \geq 1 / 2$. Find the cosine series of $g(x)$, using the cosine-series formulas:

$$
\begin{aligned}
& g(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \\
& a_{n}=2 \int_{0}^{1} g(x) \cos (n \pi x) d x .
\end{aligned}
$$

[The $n=0$ term has a $1 / 2$ factor in the first formula so that the second formula works for all n. The reason for the difference is just a matter of normalization: $\|\cos (0 \pi x)\|^{2}=1$, but $\|\cos (n \pi x)\|^{2}=1 / 2$ for $n>0$.] Hint: you should find that $a_{n}=0$ for even n.
Solution We have

$$
a_{0}=2 \int_{0}^{1} g(x) d x=2 \int_{0}^{1 / 2} d x+2 \int_{1 / 2}^{1}(-1) d x=0
$$

and for $n \geq 1$,

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} g(x) \cos (n \pi x) d x \\
& =2 \int_{0}^{1 / 2} \cos (n \pi x) d x-2 \int_{1 / 2}^{1} \cos (n \pi x) d x \\
& =\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{0} ^{1 / 2}-\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{1 / 2} ^{1} \\
& =\frac{4}{n \pi} \sin (n \pi / 2)
\end{aligned}
$$

Notice that $\sin (n \pi / 2)$ equals 0 when n is even, equals 1 when n is of the form $4 k+1$, and equals -1 when n is of the form $4 k+3$. We finally find the cosine series of g,

$$
\begin{aligned}
g(x) & =\sum_{k=1}^{\infty}\left(\frac{4}{(4 k+1) \pi} \cos [(4 k+1) \pi x]-\frac{4}{(4 k+3) \pi} \cos [(4 k+3) \pi x]\right) \\
& =\frac{4}{\pi} \cos (\pi x)-\frac{4}{3 \pi} \cos (3 \pi x)+\frac{4}{5 \pi} \cos (5 \pi x)-\frac{4}{7 \pi} \cos (7 \pi x)+\cdots
\end{aligned}
$$

(d) Verify that $g(x)$ from (c) is in the column space from (b). Using your answer from (c), find the cosine series for $f(x)$ to satisfy Poisson's equation. $f(x)$ should be the sum of a particular solution plus an arbitrary nullspace solution, using your answer to (a).
Solution Since $a_{0}=0, g(x)$ lies in the column space of the operator $d^{2} / d x^{2}$.
To find a particular solution $f(x)$, we suppose $f(x)$ has the cosine series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) .
$$

We have seen above that

$$
\frac{d^{2} f}{d x^{2}}=-\sum_{n=1}^{\infty} n^{2} \pi^{2} a_{n} \cos n \pi x
$$

Compare its coefficients with the coefficients of the cosine series of g above, we conclude that $a_{n}=0$ for even $n \geq 2, a_{n}=-\frac{4}{n^{3} \pi^{3}}$ for odd n of the form $4 k+1$, and $a_{n}=\frac{4}{n^{3} \pi^{3}}$ for odd n of the form $4 k+3$. There is no restriction on a_{0}, so it can be arbitrary constant, which corresponds to arbitrary nullspace solution. (The Fourier series method is easy to solve ODE, since inverting $d^{2} / d x^{2}$ corresponds to simply multiplying each eigenfunction by the inverse of the eigenvalues.)
(e) In Matlab, plot the first four nonzero terms of your $g(x)$ cosine series, and then plot the first 8 nonzero terms-verify that the cosine series is converging to $g(x)$ (except right at the point of the discontinuity). For example, if you put the coefficients in the variables a 0 , a1, and so on (e.g. a0 $=1.234 / \mathrm{pi}$), then you can plot the first four terms of the Fourier cosine series with the command:

```
fplot(@(x) a0/2 + a1*cos(pi*x) + a2*cos(2*pi*x) + a3*cos(3*pi*x), [0,1])
```

Solution The Inputs are

```
>> fplot(@(x) 4/pi*cos(pi*x) -4/(3*pi)*cos(3*pi*x)
    +4/(5*pi)*\operatorname{cos}(5*pi*x) - 4/(7*pi)*\operatorname{cos}(7*pi*x), [0,1])
>> fplot(@(x) 4/pi*cos(pi*x) -4/(3*pi)*cos(3*pi*x)
    + 4/(5*pi)*\operatorname{cos}(5*pi*x) - 4/(7*pi)*\operatorname{cos}(7*pi*x)
    + 4/(9*pi)*\operatorname{cos}(9*pi*x) - 4/(11*pi)*\operatorname{cos}(11*pi*x)
    + 4/(13*pi)*\operatorname{cos}(13*pi*x) - 4/(15*pi)*cos(15*pi*x), [0,1])
```

Outputs

Figure 1: 4 nonzero terms of g

Figure 2: 8 nonzero terms of g
(f) As in (e), but plot the first 4 and 8 non-zero terms of your solution $f(x)$ from (d) [just pick some value for the nullspace part of the solution]. Which series converges faster, the one for f or the one for g ?
Solution We pick the arbitrary constant a_{0} to be zero. The codes:
>> fplot(@(x) $-4 /\left(\mathrm{pi}^{\wedge} 3\right) * \cos (\mathrm{pi} * \mathrm{x})+4 /\left(3^{\wedge} 3 * \mathrm{pi}^{\wedge} 3\right) * \cos (3 * \mathrm{pi} * \mathrm{x})$
$-4 /\left(5^{\wedge} 3 * \mathrm{pi}\right.$ ^3) $\left.* \cos (5 * \mathrm{pi} * \mathrm{x})+4 /\left(7^{\wedge} 3 * \mathrm{pi}{ }^{\wedge} 3\right) * \cos (7 * \mathrm{pi} * \mathrm{x}),[0,1]\right)$
> fplot(@(x) $-4 /\left(\mathrm{pi}^{\wedge} 3\right) * \cos (\mathrm{pi} * \mathrm{x})+4 /\left(3^{\wedge} 3 * \mathrm{pi} 3\right) * \cos (3 * \mathrm{pi} * \mathrm{x})$

- 4/($\left.5 \wedge 3 * \mathrm{pi} 3) * \cos (5 * \mathrm{pi} * \mathrm{x})+4 /\left(7^{\wedge} 3 * \mathrm{pi} \mathrm{n}^{\wedge} 3\right) * \cos (7 * \mathrm{pi} * \mathrm{x}),[0,1]\right)$
- 4/(9^3*pi^3)*cos(9*pi*x) + 4/(11^3*pi^3)*cos(11*pi*x)
$\left.-4 /\left(13^{\wedge} 3 * \mathrm{pi} \mathrm{n}^{\wedge} 3\right) * \cos (13 * \mathrm{pi} * \mathrm{x})+4 /\left(15^{\wedge} 3 * \mathrm{pi}{ }^{\wedge} 3\right) * \cos (15 * \mathrm{pi} * \mathrm{x}),[0,1]\right)$

Outputs

Figure 3: 4 nonzero terms of f
It turns out that the cosine series for f converges much faster. This is true in general, since the denominator of each term in the cosine series of f is much bigger than the corresponding term of g. (There is an extra n^{2} term)

Figure 4: 8 nonzero terms of f

Problem 3: $(18=13+5)$ (1) Follow the steps in problem 13 on page 350 to show that A^{T} is always similar to A.
Solution

- Step 1: J_{i} is similar to J_{i}^{T}.

Recall that any Jordan block is of the form

$$
J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right)
$$

Take M_{i} to be the anti-diagonal matrix whose anti-diagonal elements are 1, and whose size is the same as J_{i}, i.e.

$$
M_{i}=\left(\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \cdots & 0 & 0 & 0
\end{array}\right) .
$$

Then one can easily check that $M_{i}^{-1}=M_{i}$. Notice that multiply to the left by M_{i} just changes the rows from $1,2, \cdots, n$ to $n, n-1, \cdots, 1$, and multiply to the right by M_{i} just
changes the columns from $1,2, \cdots, n$ to $n, n-1, \cdots, 1$. So it follows

$$
M_{i}^{-1} J_{i} M_{i}=M_{i} J_{i} M_{i}=J_{i}^{T}
$$

- Step 2: Now given the Jordan form

$$
J=\left(\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots \\
0 & 0 & \cdots & J_{r}
\end{array}\right)
$$

we take

$$
M=\left(\begin{array}{cccc}
M_{1} & 0 & \cdots & 0 \\
0 & M_{2} & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots \\
0 & 0 & \cdots & M_{r}
\end{array}\right)
$$

it follows from part one that $M^{-1} J M=J^{T}$.

- Step 3: Suppose $A=P J P^{-1}$, where J is Jordan form above. Take $Q=M P^{T}$, then

$$
A^{T}=\left(P^{-1}\right)^{T} J^{T} P^{T}=\left(P^{T}\right)^{-1} M^{-1} J M P^{T}=Q^{-1} J Q
$$

so A^{T} is similar to A.
(2) Is A^{H} always similar to A ? Justify your conclusion.

Solution No.
Since the eigenvalues of A^{T} are the same eigenvalues of A, we see that the eigenvalues of A^{H} are the conjugate of the eigenvalues of A. So in general A^{H} has different eigenvalues of A, and thus they are not similar.

Problem 4: $(16=4+4+4+4)$ Let $A=\mathbf{u v}^{T}$ be any rank-1 matrix.
(1) What is the dimension of $N(A)$? What is $C(A)$?

Solution Since A is rank-1 matrix, the dimension of $N(A)$ is $n-1$.
(For any two matrices A and B, the column space of $A B$ always lies in the column space of A.) Since the column space of A is one dimensional, and is contained in the line spanned by \mathbf{u}, we see that the column space of A is exactly the line spanned by \mathbf{u}.
(2) Find all eigenvalues of A, assuming that \mathbf{u} and \mathbf{v} both have n components so that A is square.
Solution Since $N(A)$ is $n-1$ dimensional, 0 is an eigenvalue of A with multiplicity $n-1$. Since $C(A)$ is one dimensional and contains \mathbf{u}, the vector \mathbf{u} must be an eigenvector. Now

$$
A \mathbf{u}=\left(\mathbf{u} \mathbf{v}^{T}\right) \mathbf{u}=\mathbf{u}\left(\mathbf{v}^{T} \mathbf{u}\right)=\left(\mathbf{v}^{T} \mathbf{u}\right) \mathbf{u}
$$

so the corresponding eigenvalue (the last one) is $\mathbf{v}^{T} \mathbf{u}$. (However, if $\mathbf{v}^{T} \mathbf{u}=0$, then all eigenvalues are 0 , AND there are only $n-1$ eigenvectors, in which case the matrix is not diagonalizable.)
(3) What are the singular values of A ? What is an SVD for A ?

Solution Since $A A^{T}=\mathbf{u v}^{T} \mathbf{v u}^{T}=\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{u u ^ { T }}$, so the eigenvalues of $A A^{T}$ are 0 (of multiplicity $n-1)$ and $\left(\mathbf{v}^{T} \mathbf{v}\right)\left(\mathbf{u}^{T} \mathbf{u}\right)$ (which is nonzero). Thus the singular values of A is $0, \cdots, 0, \sqrt{\left(\mathbf{v}^{T} \mathbf{v}\right)\left(\mathbf{u}^{T} \mathbf{u}\right)}$.

Now SVD for A is $U \Sigma V$, where U is unitary whose first $n-1$ columns are an orthonormal basis of $N(A)$ (= the hyperplane whose normal vector is \mathbf{u}), and the last column is $\hat{\mathbf{u}}$, the normalization of \mathbf{u}, and V has the same description, replacing \mathbf{u} by \mathbf{v}.
(4) Construct a rank-1 matrix A so that $A(1,0,1)^{T}=(2,1)^{T}$.

Solution A must be a 2×3 matrix. Thus $A=\mathbf{u v}^{T}$, with u a 2 -vector, and \mathbf{v} a 3 vector. Since $(2,1)^{T}$ lies in the column space which is one dimensional, we see from above that it is eigenvector which is a multiple of \mathbf{u}. We can take $\mathbf{u}=(2,1)^{T}$. Now from $A(1,0,1)^{T}=(2,1)^{T}$ we get $\mathbf{v}^{T}(1,0,1)^{T}=1$. We can take, for example, $\mathbf{v}=(1,0,0)^{T}$. Thus we may take $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$.
(The general form of \mathbf{v} is $(a, b, 1-a)^{T}$, and the general A is $A=\left(\begin{array}{ccc}2 a & 2 b & 2-2 a \\ a & b & 1-a\end{array}\right)$).

Problem 5: $(16=4+4+4+4)$ (1) Find the SVD for $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right)$.
Solution We have $A^{T} A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, whose eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=1$, and corresponding eigenvectors, after normalization, are $\mathbf{v}_{1}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$ and $\mathbf{v}_{2}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$. It follows that

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{3}} A \mathbf{v}_{1}=\left(\begin{array}{c}
1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right), \quad \mathbf{u}_{2}=A \mathbf{v}_{2}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right)
$$

The vector \mathbf{u}_{3} is the unit vector in the nullspace of A^{T}, which is $\mathbf{u}_{3}=\left(\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right)$. So the SVD for A is

$$
A=\left(\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right) .
$$

(2) Find the pseudoinverse B of A.

Solution The pseudoinverse B of A is

$$
\begin{aligned}
B & =\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 3 & 2 / 3
\end{array}\right) .
\end{aligned}
$$

(3) Compute $A B, B A, A B A$, and $B A B$.

Solution Just straightforward computation:

$$
A B=\left(\begin{array}{ccc}
2 / 3 & 1 / 3 & -1 / 3 \\
1 / 3 & 2 / 3 & 1 / 3 \\
-1 / 3 & 1 / 3 & 2 / 3
\end{array}\right), \quad B A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and thus $A B A=A(B A)=A I=A, B A B=(B A) B=I B=B$.
(4) What are $A B A$ and $B A B$ for a general matrix A and its pseudoinverse B, given the definitions of the SVD and pseudoinverse?
Solution We will always have $A B A=A$ and $B A B=B$. In fact, we have

$$
\Sigma^{+} \Sigma=\left(\begin{array}{lllll}
1 / \sigma_{1} & & & & \\
& \ddots & & & \\
& & 1 / \sigma_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right)\left(\begin{array}{lllll}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right)=\left(\begin{array}{lllll}
1 & & & & \\
& \ddots & & & \\
& & 1 & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right)
$$

it follows $\Sigma \Sigma^{+} \Sigma=\Sigma$ and $\Sigma^{+} \Sigma \Sigma^{+}=\Sigma^{+}$. Thus

$$
A B A=U \Sigma V^{H} V \Sigma^{+} U^{H} U \Sigma V^{H}=U \Sigma \Sigma^{+} \Sigma V^{H}=U \Sigma V^{H}=A
$$

and

$$
A B A=V \Sigma^{+} U^{H} U \Sigma V^{H} V \Sigma^{+} U^{H}=V \Sigma^{+} \Sigma \Sigma^{+} U^{H}=V \Sigma^{+} U^{H}=B .
$$

Problem 6: $(10=5+5)$ Given the SVD $A=U \Sigma V^{H}$.
(1) What is the SVD of A^{H} and A^{-1} (assuming A is invertible)?

Solution For A^{H} we have $A^{H}=V \Sigma^{H} U^{H}=V \Sigma U^{H}$.
Suppose A is invertible, then it is square matrix, and Σ is invertible diagonal matrix. So the SVD of A^{-1} is $A^{-1}=V \Sigma^{-1} U^{H}$.
(2) If the QR decomposition of A is $A=Q R$, what is the SVD for R ?

Solution If A is a square matrix, then $A=Q R=U \Sigma V^{H}$, so it follows $R=\left(Q^{H} U\right) \Sigma V^{H}$, which is the SVD for R.

If A is an $m \times n$ non-square with full column rank (thus $m \geq n$), then $A=Q R$ is also defined to be the result of Gram-Schmidt, in which case Q is $m \times n$ matrix whose columns are orthonormal vectors, and R is $n \times n$ and invertible. In this case, given the SVD $A=U \Sigma V$, we may take only the first n columns of U, and the upper-left $n \times n$ corner of Σ, corresponding to a basis for $C(A)$ only, then apply above arguments.

