Practice 18.06 Exam 3 questions

List of potential topics:

Material from exams 1 and 2. Eigenvalues and eigenvectors, characteristic polynomials and nullspaces of
A — A\I. Similar matrices and diagonalization. Complex vs. real linear algebra, adjoints vs. transposes.
Hermitian (A = A), anti-Hermitian (A” = —A), and unitary matrices (A7 = A1), and their eigenval-
ues/eigenvectors. Markov matrices. Linear recurrences x,11 = Ax, and powers of matrices. Differential
equations ‘fl—’t‘ = Ax and matrix exponentials. Hermitian operators on functions, eigenfunctions, Fourier se-
ries, and equations written in terms of these (exponentials, inverses, etc. of operators) [see online handouts].
Positive-definite and positive-semidefinite matrices. The singular value decomposition (SVD) A = USVH
and the pseudoinverse AT = VETUH.

Definitely not on exam 3: finite-difference approximations, sparse matrices and iterative methods, non-
diagonalizable matrices, generalized eigenvectors, or Jordan forms. Also not fast Fourier transforms or the
discrete Fourier transform (which were on the original syllabus but were skipped).

Key ideas: for an eigenvector, any complicated matrix or operator acts just like a number A, and we can
do anything we want (inversion, powers, exponentials...) using that number. To act on an arbitrary vector,
we expand that vector in the eigenvectors (in the usual case where the eigenvectors form a basis), and then
treat each eigenvector individually. Finding eigenvectors and eigenvalues is complicated, though, so we try
to infer as much as we can about their properties from the structure of the matrix/operator (Hermitian,
Markov, etcetera).

The actual exam will be four or five questions, so this is about two to three (hard) exams worth of
potential questions. (Some of these questions were rejected because they were a bit too hard/long for an
exarm.)

Problem 1

Suppose A4 is a square matrix with A¥ = u2A, where u is some complex number with |u| = 1.
(a) Show that B = zA is Hermitian for some complex number z. What is 27
(b) What can you conclude about the eigenvalues and eigenvectors of A?

Solution:

(a) If B = 2A, then BY = zA" = zu?A = (2u?/2)B. Then, to make BY = B, we must have z/z = u?,
which is solvable since |z/z| = 1 = |u?|. The magnitude of z is arbitrary, so let us choose |z| = 1 in which
case Z = 1/z and thus we have 22 = u? and hence z = u. That is, B = uA works.

(b) The eigenvectors with distinct eigenvalues are orthogonal, and the eigenvectors form a basis (A is
diagonalizable since B is). The eigenvalues of B are real because it is Hermitian, so the eigenvalues of
A = B/u = 4B are real numbers multiplied by @.

Problem 2

In an ordinary eigenproblem we solve Ax = Ax to find the eigenvectors x and eigenvalues A, and if A = A#
(Hermitian) we find that A is real and eigenvectors with different eigenvalues are orthogonal.

Now, suppose that instead we are looking for solutions of Ax = ABx where we have matrices A and B
on both sides of the equation. Suppose that both A and B are Hermitian, and B is positive-definite.



(a) Show that the “eigenvalues” A in Ax = ABx are real. (Hint: take the dot product of both sides with
X.)

(b) Show that two solutions Ax; = A1 Bx; and Axs = Aoy Bxy with A; # s satisfy x; - (Bx2) = 0. (Hint:
take the dot product of both sides of one equation with x;.)

Solution

(a) x - (Ax) = MAx - (Bx) but it also = (Ax) - x = A(Bx) -x = Ax - (Bx) since A and B are Hermitian (we
can move them from one side to the other of the dot product). Therefore, Ax - (Bx) = Ax - (Bx) and hence
A = \is real [x - (Bx) > 0 since B is positive-definite].

(b) X1 - (AXQ) = A2X1 . (BXQ) = (AXl) s Xo = )\2(BX1) cXo = A2X1 . (BXQ), hence ()\2 - /\1)X1 . (BXQ) = O,
hence x; - (Bxa) = 0 since Ay # Aa.

Problem 3

True or false: any Markov matrix A is also positive-semidefinite. Explain why if true, or give a counter-
example if false.

Solution: False. All the eigenvalues of a Markov matrix have |A\| < 1 but complex A and A < 0 are also
0
1 0
entries of a Markov matrix are all non-negative, but that should not be confused with positive-semidefinite.

possible. For example, A = is a real-symmetric Markov matrix with eigenvalues A = £1. The

Problem 4

True or false: Explain why if true, or give a counter-example if false.
(a) Any diagonalizable matrix with real eigenvalues is Hermitian.
(b) The product of two Hermitian matrices is Hermitian.
(c¢) The product of two unitary matrices is unitary.
(d) The sum of two Hermitian matrices is Hermitian.
(e) The sum of two unitary matrices is unitary.

Solutions:

(a) False. Say A = SAS~! with A real and distinct A\; # X # --+ # A\u; A is not Hermitian if S is any
invertible matrix with non-orthogonal columns (non-orthogonal eigenvectors).

(b) False, since (AB)H = BHA” = BA # AB unless A and B commute. For example, A = ( (1) (1) >
1 0 . 0 2
zaundB—(0 9 give AB = 10
(c) True: (AB)H = BHAH = B~1A~! = (AB)~! if A and B are unitary.
(d) True: (A+ B)# = A + BH = A+ B if A and B are Hermitian.
(e) False, since (A + B)~™! # A=1 4+ B~! in general. For example, I is unitary but I + I = 21 is not.

, which is not Hermitian.



Problem 5

Cal Q. Luss, a Harvard student, doesn’t like the definition of Markov matrices. He suggests instead that we
use “Markoffish” matrices: real matrices A whose columns sum to 1 like for Markov matrices, but negative
entries are allowed.

(a) Show that Markoffish matrices still have a A = 1 eigenvalue (hint: consider the eigenvalues of AT).

(b) Show that the product of two Markoffish matrices is a Markoffish matrix.

(c) For Markov matrices, from (b) we concluded that |\| > 1 eigenvalues were not allowed. Is that still
true for Markoffish matrices? Explain why if true, or give a counter-example if false.

Solution

(a) As in class, the fact that the sum of each column is one is equivalent to the statement that A7x = x for
x = (1,1,1,...)7. Hence, A = 1 is still an eigenvalue, since A and AT have the same eigenvalues.

(b) We can show this by the same explicit summation argument as in class. Or we can use the fact that
A being Markoffish is equivalent to x” A = xT for the x from (a). Thus, if we have two Markoffish matrices
A and B then x7(AB) = (xT A)B = xT B = x* and hence AB is Markoffish.

(c) No, this is no longer true; before, the fact that A™ was Markov meant that it could not blow up and
hence |A| < 1, but now A™ is Markoffish and can blow up: its entries can be arbitrarily large and negative.
2

For example, take the Markoffish matrix A = ( 1

_21 ), whose eigenvalues satisfy \> — 4\ +3 = 0 and
hence A = 3 and A = 1, one of which is > 1.

Problem 6

Cousider the vector space of real functions f(z) on z € [0,1] with f(0) = f(1) = 1, and define the dot product
1
frg=Jy = f(x)g(z)d.

(a) Is the second-derivative operator d?/dx? still Hermitian under this inner product? Why or why not?

(b) Show that the operator A defined by Af = ﬁdd—:z[ﬁf(x)] is Hermitian under this inner product.

(c) What can you conclude about the eigenfunctions and eigenvalues of A?

(d) Show that —A is positive definite (f - (—Af) > 0 for all f # 0). What does this tell you about the
eigenvalues of A?

(e) What does your answer to (d) tell you about the solution to 81‘ \} Z=[Vaf(z,t)] = Af with some
initial condition f(x,0) = g(x), as t — oo? (Hint: expand g(z) in the elgenfunctlons, as in class, and write a
series solution for f(x,t). You can assume that the eigenfunctions form a basis for the space.)

Solution

(a) No. If we integrate by parts twice in [ 2 fg¢”, as in classwe get [(zf)"g # [xf"g.

(b) Plugging in, we find f-Ag = [ /zf(y/zg)". Integrating by parts twice as above, we get [(v/zf)"/zg =
(Af) - g and hence A is Hermitian.

(c) The eigenvalues must be real as usual, and eigenfunctions for distinct eigenvalues must be orthogonal.

[For this operator, you can actual solve analytically for the eigenfunctions sin(nrz)/+/2 and the eigenvalues
—(nm)?. However, this is not necessary to solve the problem.]

(d) Integrating by parts once: f - ( = [Vzf(Vzf) = [|(Vzf)'|*> > 0. It only = 0 if Vzf(z) is a
constant, but to satisfy the boundary condltlons f(0) = f(1) = 0 we must therefore have f(z) = 0. Hence,



f-(=Af) > 0for all f#0, and —A is positive-definite. Hence the eigenvalues of — A are positive, and hence
the eigenvalues of A are negative.

(e) Call the eigenfunctions f,(z) and the corresponding eigenvalues A, < 0. Then, we write g(z) =
> Cnfn(x) for some coefficients ¢, = fy, - g/ fn||. We have the equation % = Af, so formally the solution
is f(x,t) = e f(x,0) = eAg(x) as for the diffusion equation in class. The exponential of A is a bit weird,
but as usual we know that it is just a number when it acts on an eigenfunction:

f(z,t) = eMg(x) = e chfn(x) = cheAtfn(:E) = Z cn€™ fr().

But since all the A, eigenvalues are negative, every term goes exponentially to zero and hence f(z,t) — 0 as
t — o0.

Problem 7

Suppose that you have a system of differential equations B~'% = — B¥x with some initial condition x(0),
for some invertible matrix B.

(a) Find x(t) for B — < - > and x(0) = < 2 )

(b) What happens to your x(¢) from (a) as t — co?
(c) Argue that your answer from (b) is true in general, for any invertible n x n matrix B and any initial
condition x(0).

Solutions:
(a) We have 2 = —BB¥x, and hence x(t) = e_BBHtx(O). To solve this we must find the eigenvectors
of BBH and expand x(0) in terms of them. BBH = < ? 1 ), whose eigenvalues solve A2 — 6\ + 4 = 0,

and hence Ay = 3++6 by the quadratic equation. If we look for eigenvectors v of the form v = ( i ),

we find 5+« = A+ and hence u = —2 + /5. By inspection, we can then write x(0) = ( 2 ) =

—4
() (ot s ) e

_ _—-BBHt _ 1 —(3+VB)t 1 —(3£V5B)t
x(t)=e x(O)—(_2+\/g)e + 95 )¢

(b) 3++/5 > 0, so the x(t) function decays exponentially towards 0.
(¢) This is true in general since BBY = (BH)H (B™) is always positive-definite as shown in class; B has
full column rank (it is invertible) so it is not merely semidefinite. This means that the eigenvalues of BBH

—BBHt

are all real and positive, and hence the eigenvalues of —BB¥ are negative, and hence e is exponentially

decaying for all the eigenvectors.

Problem 8

Suppose A and B are Hermitian n x n matrices. What can you say about the eigenvalues and eigenvectors
of C =i(AB — BA)? (Hint: what is CH?)



Solution: CH = —j(BH A" — AHBH) = —j(BA — AB) = i(AB — BA) = C, so C is Hermitian and has
real eigenvalues, orthogonal eigenvectors for distinct eigenvalues, and is diagonalizable.

Problem 9
Suppose that A is an 6 x 4 matrix with full column rank (rank = 4), and has the SVD

01
02
o3

A=UXVE =U v,

o4

0

0
Recall the definition of the pseudo-inverse: A* = VE+TU#, where XV is the transpose of ¥ with the non-
zero entries (o) inverted (1/0). Show (by explicit multiplication etc.) that the pseudoinverse A™ equals

(AHA)=TAH | [That is, the A*b is equivalent to the least-squares solution to Ax = b, as we discussed in
class.]

Solution:

Given this A, we find

01

2

AFA=VyTYVH = v 72 2 v
3
of
and hence the inverse is given by inverting the eigenvalues o2:
o, 2
o2
(ATA) =V 2 vaY,

and hence



o4 01

(AHA) A" = v 92 L vHY 02 UH
0'3 g3
04_2 o, 0 O
01_2 01
- V 052 -2 02 UH
0'3 g3
UZQ o, 0 O
ofl
o1
=V R vt =vstuf
3
oyt 00

= AT,

Problem 10

Suppose that an m x n matrix has the SVD A = UXV#. Recall the definition of the pseudo-inverse:
At = VEtUH | where &7 is the transpose of ¥ with the non-zero entries (o) inverted (1/0). Show that
(AH)+ = (AH)H.

Solution:

The adjoint is A = VETUH | which immediately tells us the SVD of A#. Hence (A#)* =UXT)*VH, In
comparison, (AT)? = U(ZH)HVH, Clearly, the two are equal if (X7)* = (XT)7, which is obviously true
since inverting the singular values (X — X1 means ¢ — 1/0) can clearly be interchanged with transposition
(swapping rows and columns) without changing the result.

Problem 11

Counsider the vector space of twice differentiable real functions f(x) on x € [0,1] with f(0) = f(1) = 1,
and define the dot product f-g = fol f(z)g(z)dx as in class. Now, define a sequence of functions fi(x)
[k =0,1,2,...] by the recurrence relation Afy1(z) = fr(z) with A = j—;.

(a) Suppose that the initial function fo(z) in the recurrence has the Fourier sine series:

R
folz) = % sin(mx) — # sin(3mx) + ﬁ sin(5rx) — -+ = % ; ﬁ sin[(2¢ + 1)mx].

Give an explicit Fourier sine series for fi(x). |Recall from class: for this vector space and dot product,

sin(nma) is an eigenfunction of the Hermitian operator j—;, with eigenvalue —(n)?2.|
(b) Suppose we replace % with CQj—; for some real number c. For what values of ¢ (if any) does || fx(z)||?

diverge as k — 0o? How does your answer depend on the initial function fy(zx), if at all?



Solutions:

(a) The solution to this recurrence, like for matrix recurrences, is fi(z) = A= fo(z). To compute A, we
just multiply the eigenfunctions by A™* as usual. Hence

4 4 4 4(-1)F & -t
fu(x) = (—1)* g sin(mx) — By sin(3mwx) + G sin(bmz) — } = 7524_2)19 Z (25(4— ))2+2k sin[(2¢+1)mz],
=0

using the fact that the eigenvalues are —(nm)?.

(b) For f, to diverge, A~! should have an eigenvalue |A| > 1, and hence A should have eigenvalues |\| < 1.
IfA= 02%22, the eigenvalues of A are —(cnm)?. This has magnitude less than 1 for n = 1 when |¢| < 1/,
for n = 2 when |c| < 1/2m, and so forth. So, fi diverges when |c| < 1/7. However, this does depend on our
initial function fo: if the n = 1 term is not present, then |c¢| must be smaller; in general, if the first non-zero
eigenfunction in the sine series for fy is n = m, then we must have |¢| < 1/mn to make f; diverge.



