

Please circle your recitation:

1) T 10 2-131 K. Meszaros 2-333 3-7826 karola
2) T 10 2-132 A. Barakat 2-172 3-4470 barakat
3) T 11 2-132 A. Barakat 2-172 3-4470 barakat
4) T 11 2-131 A. Osorno 2-229 3-1589 aosorno
5) T 12 2-132 A. Edelman 2-343 3-7770 edelman
6) T 12 2-131 K. Meszaros 2-333 3-7826 karola
7) T 1 2-132 A. Edelman 2-343 3-7770 edelman
8) T 2 2-132 J. Burns 2-333 3-7826 burns
9) T $3 \quad$ 2-132 A. Osorno $\quad 2-229 \quad 3-1589$ aosorno

1 (34 pts.) (a) If a square matrix A has all n of its singular values equal to 1 in the SVD, what basic classes of matrices does A belong to? (Singular, symmetric, orthogonal, positive definite or semidefinite, diagonal)
(b) Suppose the (orthonormal) columns of H are eigenvectors of B :

$$
H=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right] \quad H^{-1}=H^{\mathrm{T}}
$$

The eigenvalues of B are $\lambda=0,1,2,3$. Write B as the product of 3 specific matrices. Write $C=(B+I)^{-1}$ as the product of 3 matrices.
(c) Using the list in question (a), which basic classes of matrices do B and C belong to? (Separate question for B and C)

Solution.

(a) If $\sigma=I$ then $A=U V^{\mathrm{T}}=$ product of orthogonal matrices $=$ orthogonal matrix.

2nd proof: All $\sigma_{i}=1$ implies $A^{\mathrm{T}} A=I$. So A is orthogonal.
(A is never singular, and it won't always be symmetric - take $U=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ and $V=I$, for example. This also shows it can't be diagonal, or positive definite or semidefinite.)
(b) $B=H \Lambda H^{-1}$ with $\Lambda=\left[\begin{array}{llll}0 & & & \\ & 1 & & \\ & & 2 & \\ & & & 3\end{array}\right]$
$(B+I)^{-1}=H(\Lambda+I)^{-1} H^{-1}$ with (same eigenvectors) $(\Lambda+I)^{-1}=\left[\begin{array}{llll}1 & & & \\ & 1 / 2 & & \\ & & 1 / 3 & \\ & & & 1 / 4\end{array}\right]$
(c) B is singular, symmetric, positive semidefinite.
C is symmetric positive definite.

2 (33 pts.) (a) Find three eigenvalues of A, and an eigenvector matrix S :

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 4 \\
0 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Explain why $A^{1001}=A$. Is $A^{1000}=I$? Find the three diagonal entries of $e^{A t}$.
(c) The matrix $A^{\mathrm{T}} A$ (for the same A) is

$$
A^{\mathrm{T}} A=\left[\begin{array}{rrr}
1 & -2 & -4 \\
-2 & 4 & 8 \\
-4 & 8 & 42
\end{array}\right]
$$

How many eigenvalues of $A^{\mathrm{T}} A$ are positive? zero? negative? (Don't compute them but explain your answer.) Does $A^{\mathrm{T}} A$ have the same eigenvectors as A ?

Solution.
(a) The eigenvalues are $-1,0,1$ since A is triangular.
$\lambda=-1$ has $x=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad \lambda=0$ has $x=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \quad \lambda=1$ has $x=\left[\begin{array}{l}7 \\ 5 \\ 1\end{array}\right]$.
Those vectors x are the columns of S (upper triangular!).
(b) $A=A \Lambda S^{-1}$ and $A^{1001}=S \Lambda^{1001} S^{-1}$. Notice $\Lambda^{1001}=\Lambda, A^{1000} \neq I$ (A is singular $)$ $\left(0^{1000}=0 \neq 1\right)$.
$e^{A t}$ has $e^{-1 t}, e^{0 t}=1, e^{t}$ on its diagonal. Proof using series:
$\sum_{0}^{\infty}(A t)^{n} / n$! has triangular matrices so the diagonal has $\sum(-t)^{n} / n!=e^{-t}, \sum 0^{n} / n!=$ $1, \sum t^{n} / n!=e^{t}$.

Proof using $S \Lambda S^{-1}$:

$$
e^{A t}=S e^{\Lambda t} S^{-1}=\left[\begin{array}{ccc}
1 & \times & \times \\
0 & 1 & \times \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
e^{-t} & & \\
& 1 & \\
& & e^{t}
\end{array}\right]\left[\begin{array}{lll}
1 & \times & \times \\
0 & 1 & \times \\
0 & 0 & 1
\end{array}\right]
$$

(c) $A^{\mathrm{T}} A$ has 2 positive eigenvalues (it has rank 2 , its eigenvalues can never be negative).

One eigenvalue is zero because $A^{\mathrm{T}} A$ is singular. And $3-2=1$.
(Or: $A^{\mathrm{T}} A$ is symmetric, so the eigenvalues have the same signs as the pivots.
Do elimination: the pivots are 1,0 , and $42-16=26$.)

3 (33 pts.) Suppose the n by n matrix A has n orthonormal eigenvectors q_{1}, \ldots, q_{n} and n positive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Thus $A q_{j}=\lambda_{j} q_{j}$.
(a) What are the eigenvalues and eigenvectors of A^{-1} ? Prove that your answer is correct.
(b) Any vector b is a combination of the eigenvectors:

$$
b=c_{1} q_{1}+c_{2} q_{2}+\cdots+c_{n} q_{n} .
$$

What is a quick formula for c_{1} using orthogonality of the q 's?
(c) The solution to $A x=b$ is also a combination of the eigenvectors:

$$
A^{-1} b=d_{1} q_{1}+d_{2} q_{2}+\cdots+d_{n} q_{n}
$$

What is a quick formula for d_{1} ? You can use the c 's even if you didn't answer part (b).

Solution.

(a) A^{-1} has eigenvalues $\frac{1}{\lambda_{j}}$ with the same eigenvectors

$$
A q_{j}=\lambda_{j} q_{j} \longrightarrow q_{j}=\lambda_{j} A^{-1} q_{j} \longrightarrow A^{-1} q_{j}=\frac{1}{\lambda_{j}} q_{j}
$$

(b) Multiply $b=c_{1} q_{1}+\cdots+c_{n} q_{n}$ by q_{1}^{T}.

Orthogonality gives $q_{1}^{\mathrm{T}} b=c_{1} q_{1}^{\mathrm{T}} q_{1}$ so $c_{1}=\frac{q_{1}^{\mathrm{T}} b}{q_{1}^{\mathrm{T}} q_{1}}=q_{1}^{\mathrm{T}} b$.
(c) Multiplying b by A^{-1} will multiply each q_{i} by $\frac{1}{\lambda_{i}}$ (part (a)). So c_{i} becomes

$$
d_{1}=\frac{c_{1}}{\lambda_{1}} \quad\left(=\frac{q_{1}^{\mathrm{T}} b}{\lambda_{1} q_{1}^{\mathrm{T}} q_{1}} \text { or } \frac{q_{1}^{\mathrm{T}} b}{\lambda_{1}}\right) .
$$

