	Grading
Your PRINTED name is:	 1
	2
	3

Please circle your recitation:

1)	T 10	2-131	K. Meszaros	2-333	3-7826	karola
2)	T 10	2-132	A. Barakat	2-172	3-4470	barakat
3)	T 11	2-132	A. Barakat	2-172	3-4470	barakat
4)	T 11	2-131	A. Osorno	2-229	3-1589	aosorno
5)	T 12	2-132	A. Edelman	2-343	3-7770	edelman
6)	T 12	2-131	K. Meszaros	2-333	3-7826	karola
7)	T 1	2-132	A. Edelman	2-343	3-7770	edelman
8)	T 2	2-132	J. Burns	2-333	3-7826	burns
9)	T 3	2-132	A. Osorno	2-229	3-1589	aosorno

- 1 (34 pts.) (a) If a square matrix A has all n of its singular values equal to 1 in the SVD, what basic classes of matrices does A belong to? (Singular, symmetric, orthogonal, positive definite or semidefinite, diagonal)
 - (b) Suppose the (orthonormal) columns of H are eigenvectors of B:

$$H = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \qquad H^{-1} = H^{T}$$

The eigenvalues of B are $\lambda=0,1,2,3$. Write B as the product of 3 specific matrices. Write $C=(B+I)^{-1}$ as the product of 3 matrices.

(c) Using the list in question (a), which basic classes of matrices do B and C belong to? (Separate question for B and C)

This page intentionally blank.

2 (33 pts.) (a) Find three eigenvalues of A, and an eigenvector matrix S:

$$A = \begin{bmatrix} -1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

- (b) Explain why $A^{1001}=A$. Is $A^{1000}=I$? Find the three diagonal entries of e^{At} .
- (c) The matrix $A^{T}A$ (for the same A) is

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & 8 \\ -4 & 8 & 42 \end{bmatrix}.$$

How many eigenvalues of $A^{T}A$ are positive? zero? negative? (Don't compute them but explain your answer.) Does $A^{T}A$ have the same eigenvectors as A?

This page intentionally blank.

- **3 (33 pts.)** Suppose the n by n matrix A has n orthonormal eigenvectors q_1, \ldots, q_n and n positive eigenvalues $\lambda_1, \ldots, \lambda_n$. Thus $Aq_j = \lambda_j q_j$.
 - (a) What are the eigenvalues and eigenvectors of A^{-1} ? Prove that your answer is correct.
 - (b) Any vector b is a combination of the eigenvectors:

$$b = c_1q_1 + c_2q_2 + \cdots + c_nq_n$$
.

What is a quick formula for c_1 using orthogonality of the q's?

(c) The solution to Ax = b is also a combination of the eigenvectors:

$$A^{-1}b = d_1q_1 + d_2q_2 + \dots + d_nq_n.$$

What is a quick formula for d_1 ? You can use the c's even if you didn't answer part (b).

This page intentionally blank.