

1)	T 10	2-131	K. Meszaros	2-333	3-7826	karola
2)	T 10	2-132	A. Barakat	2-172	3-4470	barakat
3)	T 11	2-132	A. Barakat	2-172	3-4470	barakat
4)	T 11	2-131	A. Osorno	2-229	3-1589	aosorno
5)	T 12	2-132	A. Edelman	2-343	3-7770	edelman
6)	T 12	2-131	K. Meszaros	2-333	3-7826	karola
7)	Τ1	2-132	A. Edelman	2-343	3-7770	edelman
8)	T 2	2-132	J. Burns	2-333	3-7826	burns
9)	Τ3	2-132	A. Osorno	2-229	3-1589	aosorno

1 (24 pts.) Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^3 . Find all possible values for these 3 by 3 determinants and explain your thinking in 1 sentence each.

(a) det
$$\begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} =$$

(b) det $\begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} =$
(c) det $\begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ times det $\begin{bmatrix} q_2 & q_3 & q_1 \end{bmatrix} =$

- 2 (24 pts.) Suppose we take measurements at the 21 equally spaced times t = -10, -9, ..., 9, 10. All measurements are $b_i = 0$ except that $b_{11} = 1$ at the middle time t = 0.
 - (a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line C + Dt?
 - (b) You are projecting the vector b onto what subspace? (*Give a basis.*)Find a nonzero vector perpendicular to that subspace.

- 3 (9+12+9 pts.) The Gram-Schmidt method produces orthonormal vectors q_1, q_2, q_3 from independent vectors a_1, a_2, a_3 in \mathbb{R}^5 . Put those vectors into the columns of 5 by 3 matrices Q and A.
 - (a) Give formulas using Q and A for the projection matrices P_Q and P_A onto the column spaces of Q and A.
 - (b) Is $P_Q = P_A$ and why? What is P_Q times Q? What is det P_Q ?
 - (c) Suppose a_4 is a new vector and a_1, a_2, a_3, a_4 are independent. Which of these (if any) is the new Gram-Schmidt vector q_4 ? (P_A and P_Q from above)

$$1. \frac{P_Q a_4}{\|P_Q a_4\|} \qquad 2. \frac{a_4 - \frac{a_4^T a_1}{a_1^T a_1} a_1 - \frac{a_4^T a_2}{a_2^T a_2} a_2 - \frac{a_4^T a_3}{a_3^T a_3} a_3}{\|\text{ norm of that vector }\|} \qquad 3. \frac{a_4 - P_A a_4}{\|a_4 - P_A a_4\|}$$

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry × throughout its first row and column. The other 9 numbers could be anything like $1, 5, 7, 2, 3, 99, \pi, e, 4$.

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \text{any numbers} \\ \times & \text{any numbers} \\ \times & \text{any numbers} \end{bmatrix}$$

- (a) The determinant of A is a polynomial in \times . What is the largest possible degree of that polynomial? Explain your answer.
- (b) If those 9 numbers give the identity matrix I, what is det A? Which values of \times give det A = 0?

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & 1 & 0 & 0 \\ \times & 0 & 1 & 0 \\ \times & 0 & 0 & 1 \end{bmatrix}$$