18.06 Professor Strang Quiz 2 November 1, 2006

Your PRINTED name is: \beth| Grading |
| :--- |
| 1 |
| 2 |
| 3 |
| 3 |

Please circle your recitation:

1) T 10 2-131 K. Meszaros 2-333 3-7826 karola
2) T 10 2-132 A. Barakat 2-172 3-4470 barakat
3) T 11 2-132 A. Barakat 2-172 3-4470 barakat
4) T 11 2-131 A. Osorno 2-229 3-1589 aosorno
5) T 12 2-132 A. Edelman 2-343 3-7770 edelman
6) T 12 2-131 K. Meszaros 2-333 3-7826 karola
7) T 1 2-132 A. Edelman 2-343 3-7770 edelman
8) T $2 \quad 2-132$ J. Burns 2-333 3-7826 burns
9) T $3 \quad 2-132$ A. Osorno $\quad 2-229 \quad 3-1589$ aosorno

1 (24 pts.) Suppose q_{1}, q_{2}, q_{3} are orthonormal vectors in \mathbb{R}^{3}. Find all possible values for these 3 by 3 determinants and explain your thinking in 1 sentence each.
(a) $\operatorname{det}\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]=$
(b) $\operatorname{det}\left[\begin{array}{lll}q_{1}+q_{2} & q_{2}+q_{3} & q_{3}+q_{1}\end{array}\right]=$
(c) $\operatorname{det}\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]$ times det $\left[\begin{array}{lll}q_{2} & q_{3} & q_{1}\end{array}\right]=$

This page intentionally blank.

2 (24 pts.) Suppose we take measurements at the 21 equally spaced times $t=-10,-9, \ldots, 9,10$. All measurements are $b_{i}=0$ except that $b_{11}=1$ at the middle time $t=0$.
(a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line $C+D t$?
(b) You are projecting the vector b onto what subspace? (Give a basis.) Find a nonzero vector perpendicular to that subspace.

This page intentionally blank.
$\mathbf{3}\left(\mathbf{9}+\mathbf{1 2}+\mathbf{9}\right.$ pts.) The Gram-Schmidt method produces orthonormal vectors q_{1}, q_{2}, q_{3} from independent vectors a_{1}, a_{2}, a_{3} in \mathbb{R}^{5}. Put those vectors into the columns of 5 by 3 matrices Q and A.
(a) Give formulas using Q and A for the projection matrices P_{Q} and P_{A} onto the column spaces of Q and A.
(b) Is $P_{Q}=P_{A}$ and why? What is P_{Q} times Q ? What is $\operatorname{det} P_{Q}$?
(c) Suppose a_{4} is a new vector and $a_{1}, a_{2}, a_{3}, a_{4}$ are independent. Which of these (if any) is the new Gram-Schmidt vector $q_{4} ?\left(P_{A}\right.$ and P_{Q} from above)

1. $\frac{P_{Q} a_{4}}{\left\|P_{Q} a_{4}\right\|}$
2. $\frac{a_{4}-\frac{a_{4}^{\mathrm{T}} a_{1}}{a_{1}^{\mathrm{T}} a_{1}} a_{1}-\frac{a_{4}^{\mathrm{T}} a_{2}}{a_{2}^{T} a_{2}} a_{2}-\frac{a_{4}^{\mathrm{T}} a_{3}}{a_{3}^{T} a_{3}} a_{3}}{\| \text { norm of that vector } \|}$
3. $\frac{a_{4}-P_{A} a_{4}}{\left\|a_{4}-P_{A} a_{4}\right\|}$

This page intentionally blank.

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry \times throughout its first row and column. The other 9 numbers could be anything like $1,5,7,2,3,99, \pi, e, 4$.

$$
A=\left[\begin{array}{clc}
\times & \times & \times \\
\times & \text { any numbers } \\
\times & \text { any numbers } \\
\times & \text { any numbers }
\end{array}\right]
$$

(a) The determinant of A is a polynomial in \times. What is the largest possible degree of that polynomial? Explain your answer.
(b) If those 9 numbers give the identity matrix I, what is $\operatorname{det} A$? Which values of \times give $\operatorname{det} A=0$?

$$
A=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & 1 & 0 & 0 \\
\times & 0 & 1 & 0 \\
\times & 0 & 0 & 1
\end{array}\right]
$$

This page intentionally blank.

