| | | | Grading | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Your PRINTED name is: | | $\mathbf{1}$ | |
| | | | | |

Grading

1

1 (24 pts.) This question is about an m by n matrix A for which

$$
A x=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { has no solutions and } A x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { has exactly one solution. }
$$

(a) Give all possible information about m and n and the $\operatorname{rank} r$ of A.
(b) Find all solutions to $A x=0$ and explain your answer.
(c) Write down an example of a matrix A that fits the description in part (a).

This page intentionally blank.

2 (24 pts.) The 3 by 3 matrix A reduces to the identity matrix I by the following three row operations (in order):
E_{21} : \quad Subtract 4 (row 1) from row 2.
E_{31} : \quad Subtract 3 (row 1) from row 3.
E_{23} : \quad Subtract row 3 from row 2 .
(a) Write the inverse matrix A^{-1} in terms of the E 's. Then compute $\boldsymbol{A}^{\mathbf{- 1}}$.
(b) What is the original matrix A ?
(c) What is the lower triangular factor L in $A=L U$?

This page intentionally blank.

3 (28 pts.) This 3 by 4 matrix depends on c :

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 4 \\
3 & c & 2 & 8 \\
0 & 0 & 2 & 2
\end{array}\right]
$$

(a) For each c find a basis for the column space of A.
(b) For each c find a basis for the nullspace of A.
(c) For each c find the complete solution x to $A x=\left[\begin{array}{l}1 \\ c \\ 0\end{array}\right]$.

This page intentionally blank.

4 (24 pts.) (a) If A is a 3 by 5 matrix, what information do you have about the nullspace of A ?
(b) Suppose row operations on A lead to this matrix $R=\operatorname{rref}(A)$:

$$
R=\left[\begin{array}{lllll}
1 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Write all known information about the columns of A.
(c) In the vector space M of all 3 by 3 matrices (you could call this a matrix space), what subspace S is spanned by all possible row reduced echelon forms R ?

This page intentionally blank.

