
18.06 Problem Set 9

Due TUESDAY, Nov. 22, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 11/13

Do Problem #10 from section 6.3 in your book. (For (a), just explain in your own words: Why is
u’s length constant? And why is that constant the length of u(0)?)

Solution 1

(a) The value of ‖u(t)‖2 (hence the length of u(t)) doesn’t change, because its derivative is zero.
Verify this: 2u1u

′
1 + 2u2u

′
2 + 2u3u

′
3 = 2u1(cu2 − bu3) + 2u2(au3 − cu1) + 2u3(bu1 − au2) = 0. So its

value is the same as its value at time zero, which is ‖u(0)‖2.
(b)

Q = exp(At)

= I + At + A2 t2

2!
+ A3 t3

3!
+ . . .

QT = (exp(At))T

= IT + ATt + (AT)2
t2

2!
+ (AT)3

t3

3!
+ . . .

= I + (−A)t + (−A)2
t2

2!
+ (−A)3

t3

3!
+ . . .

= exp(−At)

Problem 2 Wednesday 11/15

Do Problem #11 from section 6.4 in your book. (Answer in back, but try it yourself first.)

Solution 2

Matrix A has eigenvalues λ1 = 2, λ2 = 4, and eigenvectors x1 = 1√
2

[

1
−1

]

, x2 = 1√
2

[

1
1

]

respectively.

(Notice we’ve normalized the orthogonal eigenvectors.) So A = 2x1x
T
1 +4x2x

T
2 =

[

1 −1
−1 1

]

+
[

2 2
2 2

]

.

Matrix B has eigenvalues λ1 = 25, λ2 = 0, and eigenvectors x1 = 1
5

[

3
4

]

, x2 = 1
5

[

4
−3

]

respectively.

So B = 25x1x
T
1 + 0x2x

T
2 =

[

9 12
12 16

]

(B already has rank 1).

Problem 3 Wednesday 11/15

Do Problem #18 from section 6.4 in your book.
Then show the converse: if A has a complete set of orthonormal eigenvectors with real eigenvalues,
then it must be symmetric. (Hint: diagonalize.)

Solution 3

The nullspace and the row space are always perpendicular. But for a symmetric matrix, row space
= column space. So if y is an eigenvector for λ 6= 0 (in the column space), it must be perpendicular
to the set of eigenvectors for λ = 0 (the nullspace). (And perpendicular to the other eigenspaces
λ = β too — use A − βI (also symmetric) instead, and the same argument.)
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Going the other way: If A has a complete set of eigenvectors, we can diagonalize: A = SΛS−1.
The eigenvectors are orthonormal, so in fact A = QΛQ−1 where Q−1 = QT. And that means
AT = QΛTQT = QΛQT = A.

Problem 4 Wednesday 11/15

Do Problem #27 from section 6.4 in your book.

Solution 4

The other eigenvector is
»

1
1

–

(eigenvalue λ = 1 + 10−15), which makes an angle with the other

eigenvector
»

1
0

–

of only 45o = π/4 ! Moral: eigenvectors are very sensitive to roundoff error.

Problem 5 Friday 11/17

Do Problem #7 from section 6.5 in your book.
Use all four tests for each of these: find the pivots, the eigenvalues, the upper-left determinants,
and the “quadratic form” xTMx.

Solution 5

A =
[

1 2
0 3

]

,M = ATA =
[

1 2
2 13

]

:

• Elimination gives
"

1 2

0 9

#

, so both pivots are positive.
√

1

• The characteristic polynomial is λ2 − 14λ + 9 = 0, with roots λ = 7 ±
√

40, both positive.
√

• The upper-left determinants are|1| = 1,det(M) = 9, both positive.
√

• The “quadratic form” xT(ATA)x = x2
1+4x1x2+13x2

2 is positive definite (positive for nonzero
x): to see this, write it as a sum of two squares, xTAx = 1(x1 + 2x2)

2 + 9(x2)
2. This can

only be zero when x2 = 0 and x1 = 0: otherwise, it must be positive.
√

(Notice the pivots?
That’s because we’re really writing M = LDLT, so xTMx = (Lx)TD(Lx). The coefficients
of L give the linear combinations inside the squares, and the pivots on the diagonal of D give
the multipliers outside.)

A =

[

1 1
1 2
2 1

]

,M = ATA =
[

6 5
5 6

]

:

• Elimination gives

2

4

6 5

0 11/6

3

5, both pivots positive.
√

• The eigenvalues are λ = 1, λ = 11, both positive.
√

• The upper-left determinants are |6| = 6,det(M) = 11, both positive.
√

• The “quadratic form” xTMx = 6x2
1 + 10x1x2 + 6x2

2 is positive definite: write it as xTMx =
6(x1 + 5x2)

2 + (11/6)x2
2. This can only be zero when x2 = 0 and x1 = 0: otherwise, it must

be positive.
√

1Remember: we’re doing all four tests here, because the problem asks us to. But any ONE of the tests would be

enough to tell us whether ATA is positive-definite or not — they’re all “equivalent”.
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A =
[

1 1 2
1 2 1

]

,M = ATA =

[

2 3 3
3 5 4
3 4 5

]

:

• Elimination gives

[

2 3 3

0 1/2 −1/2

0 −1/2 1/2

]

 





2 3 3

0 1/2 −1/2

0 0 0



.⊗

• The characteristic polynomial is λ3 − 12λ2 + 11λ = 0, which has roots λ = 1, 11, 0. So one of
the eigenvalues is zero. ⊗

• The upper-left determinants are |2| = 2,
∣

∣

∣

[

2 3
3 5

]
∣

∣

∣
= 1,det(M) = 0. So one of these is zero,

too. ⊗

• The “quadratic form” xTMx = x2
1+6x1x2 +x2

2+6x1x3+8x2x3+10x2
3 is not positive definite:

for instance, take x =

[

−3
1
1

]

to make it zero. If you try writing it as a sum of squares2, you

only get two (nonzero) squares in the sum. (If xTMx = 0, then x1 + (3/2)x2 + (3/2)x3 = 0
and x2 − x3 = 0, but x3 doesn’t have to be zero!) ⊗

(This matrix is almost positive-definite: xTAx isn’t always positive, but it’s always ≥ 0. We say it’s
(positive) “semidefinite”. Notice that semidefinite matrices are just like positive-definite matrices,
except now we allow zeroes in the pivots, eigenvalues, determinants, . . . .)

Problem 6 Friday 11/17

Do Problem #20 from section 6.5 in your book.

Solution 6

(a) Every positive-definite matrix has no zero eigenvalues, so its nullspace is just {0}.
(b) Any non-identity projection matrix has a zero eigenvalue (or: a nonzero nullspace).
(c) The diagonal entries are the eigenvalues, which are all positive.

(d) The product of negative eigenvalues can be positive. For example,
»

−1
−1

–

has two negative

eigenvalues, but its determinant is +1. (It’s even diagonal!)

Problem 7 Friday 11/17

Do Problem #28 from section 6.5 in your book.
Then sketch the ellipse xTAx = 1 for θ = π/4. Draw in the eigenvectors.

Solution 7

(a) det(A) = det(Λ) = 10. (b) The eigenvalues are the diagonal entries of Λ, λ1 = 2 and λ2 = 5. (c)

The eigenvectors are x1 =
[

cos θ
sin θ

]

and x2 =
[

− sin θ
cos θ

]

, the columns of S. (d) A must be symmetric,

because S is orthogonal. A must be positive definite, because all its eigenvalues are positive.

2M = LDLT where L =

"

1
3/2 1
3/2 −1 1

#

and D =

"

2
1/2

0

#

, so xTMx = 2(x1 + (3/2)x2 + (3/2)x3)
2 +

(1/2)(x2 − x3)
2[+0x2

3]
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Figure 1: Ellipse for problem #28. Notice that the eigenvectors lie on the principal axes of the
ellipse.
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