18.06 Problem Set 9

Due TUESDAY, Nov. 22, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 11/13

Do Problem \#10 from section 6.3 in your book. (For (a), just explain in your own words: Why is u 's length constant? And why is that constant the length of $u(0)$?)

Solution 1

(a) The value of $\|u(t)\|^{2}$ (hence the length of $\left.u(t)\right)$ doesn't change, because its derivative is zero. Verify this: $2 u_{1} u_{1}^{\prime}+2 u_{2} u_{2}^{\prime}+2 u_{3} u_{3}^{\prime}=2 u_{1}\left(c u_{2}-b u_{3}\right)+2 u_{2}\left(a u_{3}-c u_{1}\right)+2 u_{3}\left(b u_{1}-a u_{2}\right)=0$. So its value is the same as its value at time zero, which is $\|u(0)\|^{2}$.
(b)

$$
\begin{aligned}
Q & =\exp (A t) \\
& =I+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\ldots \\
Q^{\mathrm{T}} & =(\exp (A t))^{\mathrm{T}} \\
& =I^{\mathrm{T}}+A^{\mathrm{T}} t+\left(A^{\mathrm{T}}\right)^{2} \frac{t^{2}}{2!}+\left(A^{\mathrm{T}}\right)^{3} \frac{t^{3}}{3!}+\ldots \\
& =I+(-A) t+(-A)^{2} \frac{t^{2}}{2!}+(-A)^{3} \frac{t^{3}}{3!}+\ldots \\
& =\exp (-A t)
\end{aligned}
$$

Problem 2 Wednesday 11/15
Do Problem \#11 from section 6.4 in your book. (Answer in back, but try it yourself first.)

Solution 2

Matrix A has eigenvalues $\lambda_{1}=2, \lambda_{2}=4$, and eigenvectors $x_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right], x_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ respectively. (Notice we've normalized the orthogonal eigenvectors.) So $A=2 x_{1} x_{1}^{\mathrm{T}}+4 x_{2} x_{2}^{\mathrm{T}}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]+\left[\begin{array}{cc}2 & 2 \\ 2 & 2\end{array}\right]$. Matrix B has eigenvalues $\lambda_{1}=25, \lambda_{2}=0$, and eigenvectors $x_{1}=\frac{1}{5}\left[\begin{array}{l}3 \\ 4\end{array}\right], x_{2}=\frac{1}{5}\left[\begin{array}{c}4 \\ -3\end{array}\right]$ respectively. So $B=25 x_{1} x_{1}^{\mathrm{T}}+0 x_{2} x_{2}^{\mathrm{T}}=\left[\begin{array}{cc}9 & 12 \\ 12 & 16\end{array}\right]$ (B already has rank 1).

Problem 3 Wednesday 11/15

Do Problem \#18 from section 6.4 in your book.
Then show the converse: if A has a complete set of orthonormal eigenvectors with real eigenvalues, then it must be symmetric. (Hint: diagonalize.)

Solution 3

The nullspace and the row space are always perpendicular. But for a symmetric matrix, row space $=$ column space. So if y is an eigenvector for $\lambda \neq 0$ (in the column space), it must be perpendicular to the set of eigenvectors for $\lambda=0$ (the nullspace). (And perpendicular to the other eigenspaces $\lambda=\beta$ too - use $A-\beta I$ (also symmetric) instead, and the same argument.)

Going the other way: If A has a complete set of eigenvectors, we can diagonalize: $A=S \Lambda S^{-1}$. The eigenvectors are orthonormal, so in fact $A=Q \Lambda Q^{-1}$ where $Q^{-1}=Q^{\mathrm{T}}$. And that means $A^{\mathrm{T}}=Q \Lambda^{\mathrm{T}} Q^{\mathrm{T}}=Q \Lambda Q^{\mathrm{T}}=A$.

Problem 4 Wednesday 11/15

Do Problem \#27 from section 6.4 in your book.

Solution 4

The other eigenvector is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (eigenvalue $\lambda=1+10^{-15}$), which makes an angle with the other eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ of only $45^{\circ}=\pi / 4!$ Moral: eigenvectors are very sensitive to roundoff error.

Problem 5 Friday 11/17

Do Problem \#7 from section 6.5 in your book.
Use all four tests for each of these: find the pivots, the eigenvalues, the upper-left determinants, and the "quadratic form" $x^{\mathrm{T}} M x$.

Solution 5

$A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right], M=A^{T} A=\left[\begin{array}{ll}1 & 2 \\ 2 & 13\end{array}\right]$:

- Elimination gives $\left[\begin{array}{cc}1 & 2 \\ 0 & \boxed{9}\end{array}\right]$, so both pivots are positive. $\sqrt{ } 1$
- The characteristic polynomial is $\lambda^{2}-14 \lambda+9=0$, with roots $\lambda=7 \pm \sqrt{40}$, both positive. $\sqrt{ }$
- The upper-left determinants are $|1|=1, \operatorname{det}(M)=9$, both positive. \checkmark
- The "quadratic form" $x^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) x=x_{1}^{2}+4 x_{1} x_{2}+13 x_{2}^{2}$ is positive definite (positive for nonzero $x)$: to see this, write it as a sum of two squares, $x^{\mathrm{T}} A x=1\left(x_{1}+2 x_{2}\right)^{2}+9\left(x_{2}\right)^{2}$. This can only be zero when $x_{2}=0$ and $x_{1}=0$: otherwise, it must be positive. \checkmark (Notice the pivots? That's because we're really writing $M=L D L^{T}$, so $x^{T} M x=(L x)^{T} D(L x)$. The coefficients of L give the linear combinations inside the squares, and the pivots on the diagonal of D give the multipliers outside.)
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 2 & 1\end{array}\right], M=A^{T} A=\left[\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right]:$
- Elimination gives $\left[\begin{array}{cc}6 & 5 \\ 0 & 11 / 6\end{array}\right]$, both pivots positive. $\sqrt{ }$
- The eigenvalues are $\lambda=1, \lambda=11$, both positive. \checkmark
- The upper-left determinants are $|6|=6, \operatorname{det}(M)=11$, both positive. \checkmark
- The "quadratic form" $x^{\mathrm{T}} M x=6 x_{1}^{2}+10 x_{1} x_{2}+6 x_{2}^{2}$ is positive definite: write it as $x^{\mathrm{T}} M x=$ $6\left(x_{1}+5 x_{2}\right)^{2}+(11 / 6) x_{2}^{2}$. This can only be zero when $x_{2}=0$ and $x_{1}=0$: otherwise, it must be positive. $\sqrt{ }$

[^0]$A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right], M=A^{T} A=\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 5 & 4 \\ 3 & 4 & 5\end{array}\right]:$

- The characteristic polynomial is $\lambda^{3}-12 \lambda^{2}+11 \lambda=0$, which has roots $\lambda=1,11,0$. So one of the eigenvalues is zero. \otimes
- The upper-left determinants are $|2|=2,\left|\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]\right|=1$, $\operatorname{det}(M)=0$. So one of these is zero, too. \otimes
- The "quadratic form" $x^{\mathrm{T}} M x=x_{1}^{2}+6 x_{1} x_{2}+x_{2}^{2}+6 x_{1} x_{3}+8 x_{2} x_{3}+10 x_{3}^{2}$ is not positive definite: for instance, take $x=\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]$ to make it zero. If you try writing it as a sum of squares ${ }^{2}$, you only get two (nonzero) squares in the sum. (If $x^{T} M x=0$, then $x_{1}+(3 / 2) x_{2}+(3 / 2) x_{3}=0$ and $x_{2}-x_{3}=0$, but x_{3} doesn't have to be zero!) \otimes
(This matrix is almost positive-definite: $x^{T} A x$ isn't always positive, but it's always ≥ 0. We say it's (positive) "semidefinite". Notice that semidefinite matrices are just like positive-definite matrices, except now we allow zeroes in the pivots, eigenvalues, determinants,)

Problem 6 Friday 11/17
Do Problem \#20 from section 6.5 in your book.

Solution 6

(a) Every positive-definite matrix has no zero eigenvalues, so its nullspace is just $\{0\}$.
(b) Any non-identity projection matrix has a zero eigenvalue (or: a nonzero nullspace).
(c) The diagonal entries are the eigenvalues, which are all positive.
(d) The product of negative eigenvalues can be positive. For example, $\left[\begin{array}{ll}-1 & \\ & -1\end{array}\right]$ has two negative eigenvalues, but its determinant is +1 . (It's even diagonal!)

Problem 7 Friday 11/17
Do Problem \#28 from section 6.5 in your book.
Then sketch the ellipse $x^{\mathrm{T}} A x=1$ for $\theta=\pi / 4$. Draw in the eigenvectors.

Solution 7

(a) $\operatorname{det}(A)=\operatorname{det}(\Lambda)=10$. (b) The eigenvalues are the diagonal entries of $\Lambda, \lambda_{1}=2$ and $\lambda_{2}=5$. (c) The eigenvectors are $x_{1}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$, the columns of S. (d) A must be symmetric, because S is orthogonal. A must be positive definite, because all its eigenvalues are positive.

[^1]

Figure 1: Ellipse for problem $\# 28$. Notice that the eigenvectors lie on the principal axes of the ellipse.

[^0]: ${ }^{1}$ Remember: we're doing all four tests here, because the problem asks us to. But any ONE of the tests would be enough to tell us whether $A^{\mathrm{T}} A$ is positive-definite or not - they're all "equivalent".

[^1]: ${ }^{2} M=L D L^{\mathrm{T}}$ where $L=\left[\begin{array}{ccc}1 & & \\ 3 / 2 & 1 & \\ 3 / 2 & -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & & \\ & 1 / 2 & \\ & & 0\end{array}\right]$, so $x^{\mathrm{T}} M x=2\left(x_{1}+(3 / 2) x_{2}+(3 / 2) x_{3}\right)^{2}+$ $(1 / 2)\left(x_{2}-x_{3}\right)^{2}\left[+0 x_{3}^{2}\right]$

