18.06 Problem Set 9
Due TUESDAY, Nov. 22, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 11/13

Do Problem #10 from section 6.3 in your book. (For (a), just explain in your own words: Why is
u’s length constant? And why is that constant the length of u(0)?7)

Solution 1

(a) The value of ||u(t)||> (hence the length of u(t)) doesn’t change, because its derivative is zero.
Verify this: 2uju) + 2uguly 4+ 2uguly = 2ug (cug — bus) + 2uz(aug — cuy) + 2uz(buy — aug) = 0. So its
value is the same as its value at time zero, which is ||u(0)|?.

(b)
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Problem 2 Wednesday 11/15
Do Problem #11 from section 6.4 in your book. (Answer in back, but try it yourself first.)
Solution 2

V2| -1

Matrix A has eigenvalues A\; = 2, Ay = 4, and eigenvectors x1 = i{ ! ],azg = % {” respectively.
(Notice we’ve normalized the orthogonal eigenvectors.) So A = 2w1w?+4x2wg = [_11 _11] + [; g} .

Matrix B has eigenvalues A\; = 25, Ao = 0, and eigenvectors x; = %{i],xg = % ] respectively.

So B = 25z12] + Ozgzg = [192 }(23] (B already has rank 1).

Problem 3 Wednesday 11/15

Do Problem #18 from section 6.4 in your book.
Then show the converse: if A has a complete set of orthonormal eigenvectors with real eigenvalues,
then it must be symmetric. (Hint: diagonalize.)

Solution 3

The nullspace and the row space are always perpendicular. But for a symmetric matrix, row space
= column space. So if y is an eigenvector for A # 0 (in the column space), it must be perpendicular
to the set of eigenvectors for A = 0 (the nullspace). (And perpendicular to the other eigenspaces
A =3 too — use A — (I (also symmetric) instead, and the same argument.)



Going the other way: If A has a complete set of eigenvectors, we can diagonalize: A = SAS™!.
The eigenvectors are orthonormal, so in fact A = QAQ ™! where Q' = QT. And that means
AT = QATQT = QAQT = A.

Problem 4 Wednesday 11/15

Do Problem #27 from section 6.4 in your book.

Solution 4

The other eigenvector is {” (eigenvalue A = 1+ 10715), which makes an angle with the other

eigenvector {(1)} of only 45° = 7/4 | Moral: eigenvectors are very sensitive to roundoff error.

Problem 5 Friday 11/17

Do Problem #7 from section 6.5 in your book.
Use all four tests for each of these: find the pivots, the eigenvalues, the upper-left determinants,
and the “quadratic form” zT Mz.

Solution 5
A= {(1) §}7M:ATA: [; 123]"

e Elimination gives { 2 }, so both pivots are positive. vV !

[9]

e The characteristic polynomial is A2 — 14\ + 9 = 0, with roots A = 7 + /40, both positive. v
e The upper-left determinants are|1| = 1,det(M) = 9, both positive. v

e The “quadratic form” zT (AT A)z = 72 + 47129+ 1373 is positive definite (positive for nonzero
z): to see this, write it as a sum of two squares, z1 Az = 1(z, + 229)% + 9(22)%. This can
only be zero when z3 = 0 and x; = 0: otherwise, it must be positive.v' (Notice the pivots?
That’s because we’re really writing M = LDLT, so "Mz = (Lz)TD(Lx). The coefficients
of L give the linear combinations inside the squares, and the pivots on the diagonal of D give
the multipliers outside.)

A= E H,M:ATA: HHE

e Elimination gives [¢] s both pivots positive. v
e The cigenvalues are A = 1, A\ = 11, both positive. v

e The upper-left determinants are |6| = 6,det(M) = 11, both positive. v

e The “quadratic form” 2T My = GZE% + 10x129 + 63:% is positive definite: write it as 2T My =
6(x1 + 5x2)? + (11/6)x3. This can only be zero when xy = 0 and z; = 0: otherwise, it must
be positive. v

!'Remember: we’re doing all four tests here, because the problem asks us to. But any ONE of the tests would be
enough to tell us whether AT A 5 positive-definite or not — they’re all “equivalent”.
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e Elimination gives
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e The characteristic polynomial is A> — 12A% + 11\ = 0, which has roots A = 1,11,0. So one of
the eigenvalues is zero. ®

e The upper-left determinants are |2| = 2, ‘ [; g” = 1,det(M) = 0. So one of these is zero,
too. ®

e The “quadratic form” 2T My = x% + 62122 —|—:E%—|—6:E1:E3 +8xox3+ 10x§ is not positive definite:
-3
1 ] to make it zero. If you try writing it as a sum of squares?, you
1
only get two (nonzero) squares in the sum. (If TMx = 0, then x1 + (3/2)xs + (3/2)x3 = 0

and xo — x3 = 0, but x3 doesn’t have to be zero!) ®

for instance, take z =

(This matrix is almost positive-definite: zT Az isn’t always positive, but it’s always > 0. We say it’s
(positive) “semidefinite”. Notice that semidefinite matrices are just like positive-definite matrices,
except now we allow zeroes in the pivots, eigenvalues, determinants, ....)

Problem 6 Friday 11/17
Do Problem #20 from section 6.5 in your book.
Solution 6

(a) Every positive-definite matrix has no zero eigenvalues, so its nullspace is just {0}.
(b) Any non-identity projection matrix has a zero eigenvalue (or: a nonzero nullspace).
(c) The diagonal entries are the eigenvalues, which are all positive.

(d) The product of negative eigenvalues can be positive. For example, {_1 _1] has two negative

eigenvalues, but its determinant is +1. (It’s even diagonal!)

Problem 7 Friday 11/17

Do Problem #28 from section 6.5 in your book.
Then sketch the ellipse 2T Az = 1 for # = 7/4. Draw in the eigenvectors.

Solution 7
(a) det(A) = det(A) = 10. (b) The eigenvalues are the diagonal entries of A, A\; =2 and Ay = 5. (c)
The eigenvectors are x1 = Zf;g} and xo = _Cgi;})e , the columns of S. (d) A must be symmetric,

because S is orthogonal. A must be positive definite, because all its eigenvalues are positive.

1 2
2 = LDLY where L = [3/2 1 and D = 1/2

], so 2 X Mz = 2(z1 + (3/2)z2 + (3/2)z3)? +
3/2 -1 1

0
(1/2)(22 — @3)*[+0a3)]
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Figure 1: Ellipse for problem #28. Notice that the eigenvectors lie on the principal axes of the
ellipse.



