18.06 Problem Set 8

Due Wednesday, Nov. 15, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 11/6
Do Problem \#12 from section 8.3 in your book.

Problem 2 Monday 11/6
Of 300 million Americans, 60% own their own home and the other 40% rent.
Let's represent these proportions as a vector: $x=\left[\begin{array}{l}\text { owners } \\ \text { renters }\end{array}\right]=\left[\begin{array}{l}.60 \\ .40\end{array}\right]$.
Every year, some proportion of renters will buy a house, and some proportion of homeowners will move to a rental. If these proportions remain constant, we can model this with the "Markov process" $x_{k+1}=A x_{k}$ for some 2-by-2 Markov matrix A.
Suppose the proportion of homeowners and renters is modeled by this Markov process;
it maintains the steady state $x=\left[\begin{array}{l}.60 \\ .40\end{array}\right]$ above;
and 90 percent of homeowners in any given year k still own a home in year $k+1$.
Determine A, and estimate how many American renters will buy a home this year.

Problem 3 Wednesday 11/8
Find the first three nonzero terms in the Fourier series for the period- 2π function

$$
f(t)= \begin{cases}1, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}
$$

Then find the lengths of the original function $\|f(t)\|$ and your three-term approximation $\|g(t)\|$, and the distance $\|f(t)-g(t)\|$ between them.

Problem 4 Wednesday 11/8
Do Problem \#1 from section 10.2 in your book.

Problem 5 Wednesday 11/8
Do Problem \#2 from section 10.2 in your book.

Problem 6 Wednesday 11/8
Do Problem \#17 from section 10.2 in your book.

Problem 7 Wednesday 11/8
Do Problem \#31 from section 10.2 in your book.
(Hints: U is a ___ matrix, so $U^{H} U=\ldots \quad$. Λ is a ___ matrix, so $\Lambda^{H} \Lambda$ and $\Lambda \Lambda^{H}$ are ___.)

Problem 8 Wednesday 11/8
Do Problem \#7 from section 10.3 in your book.

Problem 9 Monday 11/13
Do Problem \#16 from section 6.3 in your book.

Problem 10 Monday 11/13
Do Problem \#22 from section 6.3 in your book.
Then solve $u^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right] u$ for initial condition $u(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Is the solution stable as $t \rightarrow \infty$? Why or why not?

