18.06 Problem Set 8

Due Wednesday, Nov. 15, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 11/6
Do Problem \#12 from section 8.3 in your book.

Solution 1

The columns of A must sum to 1 , so $A=\left[\begin{array}{ccc}.7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5\end{array}\right]$.
Our theory tells us the steady state is the eigenvector with $\lambda=1$, and sure enough there is one: $x_{1}=(1,1,1)$ (or any multiple of x_{1}) works.
Why is $x_{1}=(1,1, \ldots, 1)$ a steady state? The entries of $A x_{1}$ are the sums of each row. But A is symmetric, so these are the same as the sums of each column, which are 1 . So the entries of $A x_{1}$ are 1 , just like the entries of x_{1}.

Problem 2 Monday 11/6
Of 300 million Americans, 60% own their own home and the other 40% rent.
Let's represent these proportions as a vector: $x=\left[\begin{array}{l}\text { owners } \\ \text { renters }\end{array}\right]=\left[\begin{array}{l}.60 \\ .40\end{array}\right]$.
Every year, some proportion of renters will buy a house, and some proportion of homeowners will move to a rental. If these proportions remain constant, we can model this with the "Markov process" $x_{k+1}=A x_{k}$ for some 2-by-2 Markov matrix A.
Suppose the proportion of homeowners and renters is modeled by this Markov process; it maintains the steady state $x=\left[\begin{array}{l}.60 \\ .40\end{array}\right]$ above;
and 90 percent of homeowners in any given year k still own a home in year $k+1$.
Determine A, and estimate how many American renters will buy a home this year.

Solution 2

We know the first column of A (how many homeowners are owners/renters in the following year): $A=\left[\begin{array}{ll}.90 & ? \\ .10 & ?\end{array}\right]$
We can calculate the second column of A from the steady state $A x=x:\left[\begin{array}{cc}.90 & a \\ .10 & 1-a\end{array}\right]\left[\begin{array}{l}.60 \\ .40\end{array}\right]=\left[\begin{array}{c}.60 \\ .40\end{array}\right]$ gives $A=\left[\begin{array}{ll}.90 & .15 \\ .10 & .85\end{array}\right]$.
So 15% of American renters, or 6% of Americans, will buy a home, for a total of 18 million new homeowners.

Problem 3 Wednesday 11/8

Find the first three nonzero terms in the Fourier series for the period- 2π function

$$
f(t)= \begin{cases}1, & 0<t<\pi \\ 0, & \pi<t<2 \pi\end{cases}
$$

Then find the lengths of the original function $\|f(t)\|$ and your three-term approximation $\|g(t)\|$, and the distance $\|f(t)-g(t)\|$ between them.

Solution 3

When we expand $f(t)$ as a Fourier series, it looks like $f(t)=a_{0} \cdot 1+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+$ $b_{2} \sin (2 t)+\ldots$. All we have to do is figure out the coefficients a_{i}, b_{i}. This is easy, because the basis functions $1, \cos (t), \ldots$ are orthogonal - if we take an inner product, all the other terms go away! So, to find a_{0}, we take the inner product with the basis function 1 -

$$
\begin{aligned}
(f, 1)=\int_{0}^{2 \pi} a_{0} \cdot 1+a_{1} \cos (t)+b_{1} \sin (t)+\ldots d t & =\int_{0}^{2 \pi} f(t) d t \\
\int_{0}^{2 \pi} a_{0} d t & =\int_{0}^{\pi} d t \\
2 \pi a_{0} & =\pi
\end{aligned}
$$

so $a_{0}=1 / 2$.
Similarly for a_{1} :

$$
\begin{aligned}
(f, \cos (t))=\int_{0}^{2 \pi}\left(a_{0} \cdot 1+a_{1} \cos (t)+b_{1} \sin (t)+\ldots\right) \cos (t) d t & =\int_{0}^{2 \pi} f(t) \cos (t) d t \\
\int_{0}^{2 \pi} a_{1} \cos (t) d t & =\int_{0}^{\pi} \cos (t) d t \\
\pi a_{1} & =0
\end{aligned}
$$

so $a_{1}=0$; in fact, all the cosine coefficients a_{k} are zero.
Similarly for the sine coefficients b_{k} :

$$
\begin{aligned}
(f, \sin (k t))=\int_{0}^{2 \pi}\left(a_{0} \cdot 1+a_{1} \cos (t)+b_{1} \sin (t)+\ldots\right) \sin (k t) d t & =\int_{0}^{2 \pi} f(t) \sin (k t) d t \\
\int_{0}^{2 \pi} a_{1} \sin (k t) d t & =\int_{0}^{\pi} \sin (k t) d t \\
\pi b_{k} & =\left[\frac{-\cos (k t)}{k}\right]_{t=0}^{\pi}
\end{aligned}
$$

This gives $b_{k}=0$ if k is even, and $b_{k}=\frac{2}{k \pi}$ if k is odd.
(You could also use the book's formulas to find the coefficients. But this is where they come from.)
So the first three terms of the Fourier series for $f(t)$ are

$$
f(t) \approx g(t)=\frac{1}{2}+\frac{2}{\pi} \sin (t)+\frac{2}{3 \pi} \sin (3 t)
$$

Now we find the lengths.
$\|f(t)\|^{2}=(f, f)=\int_{0}^{2 \pi} f(t)^{2} d t=\int_{0}^{\pi} d t=\pi$, so $\|f\|=\sqrt{\pi}$.
$\|g(t)\|^{2}=(g, g)=(1 / 2)^{2}+(2 / \pi)^{2}+(2 / 3 \pi)^{2}$ (the basis vectors are orthogonal!), so $\|g\|=\sqrt{(1 / 4)+\left(40 / 9 \pi^{2}\right)}=$ $\sqrt{160+9 \pi^{2}} / 6 \pi$.
$\|f(t)-g(t)\|^{2}=(f-g, f-g)=\int_{0}^{2 \pi}(f(t)-1 / 2-2 / \pi \sin (t)-2 / 3 \pi \sin (3 t))^{2} d t=\ldots$
You could evaluate that integral, but there's an easier way: since g is the orthogonal projection of f into a subspace, the error $f-g\left(=b_{5} \sin (5 t)+b_{7} \sin (7 t)+\ldots\right)$ is orthogonal to g ! So $\|f\|^{2}=$ $\|g\|^{2}+\|f-g\|^{2}$ and $\|f-g\|^{2}=\sqrt{\pi}-\sqrt{160+9 \pi^{2}} / 6 \pi$.
(It's not obvious this is positive (as lengths should be), but it is.)

Problem 4 Wednesday 11/8
Do Problem \#1 from section 10.2 in your book.

Solution 4

You can still find lengths by the Pythagorean theorem (since $|a+b i|=\sqrt{a^{2}+b^{2}}$):
$\|u\|=\sqrt{(1+1)+(1+1)+(1+4)}=\sqrt{9}=3$,
and $\|v\|=\sqrt{(0+1)+(0+1)+(0+1)}=\sqrt{3}$.
Or take the dot product (don't forget to conjugate!):
$\|u\|=\sqrt{u^{\mathrm{H}} u}=\sqrt{(1-i)(1=i)+(1+i)(1-i)+(1-2 i)(1+2 i)}=\sqrt{2+2+5}=3$,
and $\|v\|=\sqrt{v^{\mathrm{H}} v}=\sqrt{(-i)(+i)+(-i)(+i)+(-i)(+i)}=\sqrt{1+1+1}=\sqrt{3}$.
For complex inner products, order matters:
$u^{\mathrm{H}} v=(1-i) i+(1+i) i+(1-2 i) i=2+3 i$,
but $v^{\mathrm{H}} u=-i(1+i)-i(1-i)-i(1+2 i)=2-3 i$!
(The difference is that $\left(u^{H} v\right)^{H}=v u^{H}$ conjugates u, but $v^{H} u$ conjugates v. So the two products are conjugates of each other.)

Problem 5 Wednesday 11/8
Do Problem \#2 from section 10.2 in your book.

Solution 5

$A=\left[\begin{array}{lll}i & 1 & i \\ 1 & i & i\end{array}\right]$ so $A^{\mathrm{H}}=\left[\begin{array}{cc}1 & -i \\ -i & 1 \\ -i & -i\end{array}\right]$.
$A^{\mathrm{H}} A=\left[\begin{array}{ccc}0 & 2 & i+1 \\ 2 & 0 & 1+i \\ 1-i & -i+1 & 2\end{array}\right]$
$A A^{\mathrm{H}}=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$
Both of these are Hermitian: their conjugate transpose is itself, $M^{\mathrm{H}}=\bar{M}^{\mathrm{T}}=M$. (The second one is also real (and hence symmetric): this is just a coincidence.)

Problem 6 Wednesday 11/8
Do Problem \#17 from section 10.2 in your book.

Solution 6

First find the eigenvalues: $\lambda^{2}-2(\cos \theta) \lambda+1=0$ has roots $\lambda=\cos \theta \pm i \sin \theta$. Notice that both eigenvalues have $|\lambda|=1$, since Q is orthogonal.
Now find the eigenvectors. For $\lambda_{+}=\cos \theta+i \sin \theta$, we want a vector x with $\left[\begin{array}{cc}-i \sin \theta & -\sin \theta \\ \sin \theta & -i \sin \theta\end{array}\right] x=0$, such as $x_{+}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$. Similarly, $\lambda_{-}=\cos \theta-i \sin \theta$ has eigenvector $x_{-}=\left[\begin{array}{c}1 \\ +i\end{array}\right]$.
These eigenvectors are automatically orthogonal (that is, $\left(u_{+}, u_{-}\right)=1(1)-i(-i)=1-1=0$), but we want the columns of U to be orthonormal, so we need to divide by the lengths: $u_{+}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$ and $u_{-}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ +i\end{array}\right]$.
Then our factorization is

Problem 7 Wednesday 11/8

Do Problem \#31 from section 10.2 in your book.
(Hints: U is a __ matrix, so $U^{H} U=_. \Lambda$ is a __ matrix, so $\Lambda^{H} \Lambda$ and $\Lambda \Lambda^{H}$ are __ .)

Solution 7

(Answers to hints: U is unitary, so $U^{H} U=I$. Λ is diagonal, so $\Lambda^{H} \Lambda=\Lambda \Lambda^{H}$.)
$A^{\mathrm{H}} A=\left(U \Lambda^{\mathrm{H}} U^{\mathrm{H}}\right)\left(U \Lambda U^{\mathrm{H}}\right)=U \Lambda^{\mathrm{H}} \Lambda U^{\mathrm{H}}$,
$A A^{\mathrm{H}}=\left(U \Lambda U^{\mathrm{H}}\right)\left(U \Lambda^{\mathrm{H}} U^{\mathrm{H}}\right)=U \Lambda \Lambda^{\mathrm{H}} U^{\mathrm{H}}$,
and since $\Lambda^{\mathrm{H}} \Lambda=\Lambda \Lambda^{\mathrm{H}}$, these are equal.

Problem 8 Wednesday 11/8
Do Problem \#7 from section 10.3 in your book.

Solution 8

Here's one step of the factorization of the Fourier matrix F_{4} :

$$
\underbrace{\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & i^{2} & i^{4} & i^{6} \\
1 & i^{3} & i^{6} & i^{9}
\end{array}\right]}_{F_{4}}=\underbrace{\left[\begin{array}{cccc}
1 & & 1 & \\
& 1 & & i \\
1 & & -1 & \\
& 1 & & -i
\end{array}\right]}_{\text {shuffle together }} \underbrace{\left[\begin{array}{cccc}
1 & 1 & & \\
1 & i^{2} & & \\
& & 1 & 1 \\
& & 1 & i^{2}
\end{array}\right]}_{\text {half-size } F \text { 's }} \underbrace{\left[\begin{array}{cccc}
1 & & \\
& & 1 & \\
& 1 & & \\
& & 1
\end{array}\right]}_{\text {split the inputs }}
$$

Now just multiply:

$$
\left.\begin{array}{rl}
F_{4} c & =\left[\begin{array}{llcc}
1 & & 1 & \\
& 1 & & i \\
1 & & -1 & \\
& 1 & & -i
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & & \\
1 & i^{2} & & \\
& & 1 & 1 \\
& & 1 & i^{2}
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& & 1
\end{array}\right. \\
& 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] .\left[\begin{array}{llll}
1 & 1 & & \\
1 & i^{2} & & \\
& & 1 & 1 \\
& 1 & & 1 \\
1 & & -1 & \\
& 1 & & -i
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{llll}
1 & & 1 & \\
& 1 & & i \\
1 & & -1 & \\
& =\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right]
\end{array}\right.
$$

So $c=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ (the frequency-space representation of $\left.f(t), 1 e^{0 i \pi t}+0 e^{(1 / 2) i \pi t}+1 e^{i \pi t}+0 e^{(3 / 2) i \pi t}\right)$
becomes $y=\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 0\end{array}\right]$ (the time-space representation, $\left[\begin{array}{l}f(0)=2 \\ f(1)=0 \\ f(2)=2 \\ f(3)=0\end{array}\right]$).
Now do the same for $c=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$; we get $c=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right] \rightsquigarrow\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right] \rightsquigarrow\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 0\end{array}\right] \rightsquigarrow y=\left[\begin{array}{c}2 \\ 0 \\ -2 \\ 0\end{array}\right]$.
(In other words, $f(t)=0 e^{0 i \pi t}+1 e^{(1 / 2) i \pi t}+0 e^{i \pi t}+1 e^{(3 / 2) i \pi t}$ has time-space representation $\left.\left[\begin{array}{c}f(0)=2 \\ f(1)=0 \\ f(2)=-2 \\ f(3)=0\end{array}\right].\right)$

Problem 9 Monday 11/13
Do Problem \#16 from section 6.3 in your book.

Solution 9

The power series for $e^{k t}$ is $1+k t+k^{2} \frac{t^{2}}{2}+k^{3} \frac{t^{3}}{6}+k^{4} \frac{t^{4}}{24}+\ldots$.
Same thing for $e^{A t}=1+A t+A^{2} \frac{t^{2}}{2}+A^{3} \frac{t^{3}}{6}+A^{4} \frac{t^{4}}{24}+\ldots$.
Differentiate: $\frac{d}{d t} e^{A t}=A+A^{2} \frac{\not 2 t}{\neq}+A^{3} \frac{\not \partial t^{2}}{\beta \cdot 2}+A^{4} \frac{4 t^{3}}{4 \cdot 6}+\ldots$
which is A times the first four terms above.
(This is almost a proof that $\exp (A t)$ is a solution to $u^{\prime}=A u$ - we should check that all the other terms work, too! Fortunately, it's easy to see that the pattern holds.)

Problem 10 Monday 11/13
Do Problem \#22 from section 6.3 in your book.
Then solve $u^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right] u$ for initial condition $u(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Is the solution stable as $t \rightarrow \infty$? Why or why not?

Solution 10

$$
\underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 1
\end{array}\right]}_{S^{-1}}
$$

so

$$
\underbrace{\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right]}_{\exp (\Lambda t)} \underbrace{\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 1
\end{array}\right]}_{S^{-1}}=\underbrace{\left[\begin{array}{cc}
e^{t} & -\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t} \\
0 & e^{3 t}
\end{array}\right]}_{\exp (A t)}
$$

At $t=0, \exp (A t)$ reduces to $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, as it should.
Solving $u^{\prime}=A u$:

$$
u(t)=\underbrace{\left[\begin{array}{cc}
e^{t} & -\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t} \\
0 & e^{3 t}
\end{array}\right]}_{\exp (A t)} \underbrace{\left[\begin{array}{l}
1 \\
2
\end{array}\right]}_{u(0)}=\left[\begin{array}{c}
e^{t}+e^{3 t} \\
2 e^{3 t}
\end{array}\right]
$$

As $t \rightarrow \infty$ both components go to infinity, so this is not stable.

