
18.06 Problem Set 7

Due Wednesday, Nov. 8, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/25

I’ve started writing Matlab code to compute the cofactor matrix C of a random 4-by-4 matrix A.
Finish it for me, then run it in Matlab, and then show it works by comparing C to det(A)*inv(A).
A = rand(4); % Pick a random 4-by-4 matrix A

C = zeros(?); % C is a matrix of size ..., we’ll fill in the entries later

for i=1:4 % For each of the rows

for j=??? % and each of the columns:

B = A; % Make a copy of A, and for this copy

B(i,:)=[]; % remove row i

???; % and column j

C(i,j)=???; % then cofactor entry (i,j) is ... of B.

end %

end %

C % print C

Solution 1

>> A=rand(4);

>> C=zeros(4); % Any 4-by-4 matrix will do here.

>> for i=1:4

for j=1:4

B=A;

B(i,:)=[];

B(:,j)=[];

C(i,j)=(-1)^(i+j)*det(B);

end

end

>> C

C =

0.2614 -0.0880 -0.2358 0.1510

-0.2714 0.1400 0.1644 -0.0021

-0.0542 0.1969 0.1795 -0.2944

-0.0766 -0.1403 0.1586 0.0733

>> det(A)*inv(A)

ans =

0.2614 -0.2714 -0.0542 -0.0766

-0.0880 0.1400 0.1969 -0.1403

-0.2358 0.1644 0.1795 0.1586

0.1510 -0.0021 -0.2944 0.0733

>> C’-ans

ans =

1.0e-16 *

0.5551 -0.5551 0.2082 -0.2776

0 0.5551 0 0.2776
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0 -0.5551 0 0

0 -0.0651 0.5551 0

C’ isn’t exactly equal to det(A)*inv(A) because of roundoff, but it’s close (within 1.0 × 10−16, in this

case).

Problem 2 Wednesday 10/25

Do Problem #13 from section 5.3 in your book.

Solution 2

We know det(A) det(A−1) = 1, and we know that both determinants are integers (since all the
entries of A and A−1 are integers). If one of them were greater than 1 (in absolute value), then the
other would have to be less than 1, which isn’t possible.

Problem 3 Wednesday 10/25

I give you a pyramid with a triangular base (i.e., a tetrahedron). The vertices of the base are
on the plane z = 0, at (x, y) = (1, 1), (1,−1), (−1, 1). The top vertex is at (x, y, z) = (0, 0, 2).
Find the surface area (excluding the base) and the volume. (Hint: Just as the area of a triangle is
1/2! = 1/2 the volume of the corresponding parallelogram, the volume of a tetrahedron is 1/3! = 1/6
the volume of the corresponding box.)

Solution 3

Surface area: I used cross products.
If u1 = [ 1 1 −2 ]T, u2 = [ 1 −1 −2 ]T, u3 = [−1 1 −2 ]T are the three edges from the top vertex
to the base vertices, then the three faces have areas
1
2‖u1 × u2‖ = 1

2‖ − 4i − 2j‖ =
√

5
1
2‖u1 × u3‖ =

√
5, by symmetry

1
2‖u2 × u3‖ = 1

2‖4i + 4j + 2k‖ = 3

So the total surface area is 3 + 2
√

5.
Volume: The (signed) volume is

1
6 det

[
1 1 −1
1 −1 1
−2 −2 −2

]

= 8/6

so the volume of the tetrahedron is 4/3.

Problem 4 Friday 10/27

Consider the matrix M =





2 2 1 1
−14 −6 −9 −7
−2 −1 −2 −1
8 1 7 4



.

(a) If one eigenvector is x1 =





1
1
0
−3



, find its eigenvalue λ1.

(b) det(M) = 0. Tell me another eigenvalue λ2, and how you know.
(c) Given the eigenvalue λ3 = −1, write down a linear system Ax = b which can be solved to find
x3.
(d) What is the trace of A? What is λ4? How do you know?
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Solution 4

(a) Mx1 = x1 so λ1 = 1.
(b) The determinant is the product of the eigenvalues, so one of the eigenvalues must be λ2 = 0.
(Alternatively: M is singular, so (since it’s square) it must have a nontrivial nullspace.)

(c) x3 satisfies (M − λ3I)x3 = 0, or in more detail,





3 2 1 1
−14 −5 −9 −7
−2 −1 −1 −1
8 1 7 5







 x3



 =





0
0
0
0



.

(d) The trace of M is (2) + (−6) + (−2) + (4) = −2. (So the trace of A = M − 3I is (−1) +
(−9) + (−5) + 1 = −14. I meant to ask for the trace of M , not A — sorry!) This is the sum of the
four eigenvalues, and we know the other three are 0, 1, and −1, so the fourth eigenvalue must be
λ4 = −2. (Or you could find the roots of det(A − λI)...)

Problem 5 Friday 10/27

Give a 2-by-2 matrix for each. (Hint: diagonalizing A = SΛS−1 may help.)

(a) an eigenvector
»

1
1

–

with eigenvalue λ = 1, and an eigenvector
»

1
−1

–

with eigenvalue λ = 5

(b) one eigenvalue is 1 + i, one eigenvalue is 1 − i, all entries of A are real numbers. What are the
eigenvectors of your matrix?
(c) both eigenvalues are 3, and A is diagonalizable. What are the eigenvectors?
(d) both eigenvalues are 3, and A is not diagonalizable. What are the eigenvectors?

Solution 5

(a) We know the eigenvectors S and eigenvalues Λ, so

A = SΛS−1 =
[

1 1
1 −1

][
1

2

][
1 1
1 −1

]
−1

=
[

3 −2
−2 3

]

(You could also put the eigenvectors in the other order, but in this case you’ll get the same matrix.)

(b) We need A to have determinant 2 and trace 2. How about
»

1 −1
1 1

–

?

Now find the eigenvectors. For (1 + i),
»

1 − (1 + i) −1
1 1 − (1 + i)

–

has nullspace
{

c
[

1
−i

]}

. For (1 − i),

do the same thing (or use symmetry — take the complex conjugate) to get the set of eigenvectors
{

c
[

1
i

]}

.

(c) Λ = 3I, so SΛS−1 = 3SS−1 must be
»

3 0
0 3

–

. Every vector in R
2 is an eigenvector!

(d)
»

3 c
0 3

–

will work, for any c. It only has a one-dimensional “eigenspace”: all multiples of
»

1
0

–

.

(There are other possibilities, too.)

Problem 6 Friday 10/27

Find the eigenvalues and eigenvectors of A =





0 1 0 1
0 1 −2 −7
0 0 −1 −1
0 0 0 2



. Then write A = SΛS−1, where Λ is

a diagonal matrix.

Solution 6

The characteristic polynomial det(A − λI) = det





0 − λ 1 0 1
0 1 − λ −2 −7
0 0 −1 − λ −1
0 0 0 2 − λ



 is (−λ)(1 − λ)(−1 −

λ)(2 − λ), so its roots (the eigenvalues) are 0,−1, 1,−2.
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Now solve (A − λI)x = 0 for each eigenvalue λ:

λ = 0: Any multiple of x1 =





1
0
0
0



 is in the nullspace {x : Ax = 0}.

λ = 1: Any multiple of x2 =





1
1
0
0



 is in the nullspace of (A − I).

λ = −1: Here (A + I) =





1 1 0 1
0 2 −2 −7
0 0 0 1
0 0 0 −1



. The first three columns are linearly dependent: x3 =





−1
1
1
0



 (or any multiple of it) is a solution to (A + I)x = 0, by inspection.

λ = −2: We solve the system (A + 2I)x = 0, or





2 1 0 1
0 3 −2 −7
0 0 1 −1
0 0 0 0









a
b
c
d



 =





0
0
0
0



. Any (nonzero)

solution will do, so pick d = 1; then by back-substitution c = 1, b = 3, and a = −2 so x4 =





−2
3
1
1





generates the λ = −2 eigenspace.

Now we can diagonalize:





0 1 0 1
0 1 −2 −7
0 0 −1 −1
0 0 0 2





︸ ︷︷ ︸

A

=





1 1 −1 −2
0 1 1 3
0 0 1 1
0 0 0 1





︸ ︷︷ ︸

S





0
1

−1
−2





︸ ︷︷ ︸

Λ





1 1 −1 −2
0 1 1 3
0 0 1 1
0 0 0 1





−1

︸ ︷︷ ︸

S−1

Problem 7 Friday 11/3

Do Problem #20 from section 6.2 in your book.

Solution 7

I found the two eigenvalues λ1 = 1, λ2 = 1
5 corresponding to the eigenvectors x1 =

[
1
1

]

, x2 =
[

1
−1

]

.

So I got A =
[

1 1
1 −1

]

︸ ︷︷ ︸

S

[
1 0
0 1/5

]

︸ ︷︷ ︸

Λ

1

2

[
1 1
1 −1

]

︸ ︷︷ ︸

S−1

.

Λk =
[

1 0
0 (1/5)k

]

goes to Λ∞ =
[

1 0
0 0

]

as k → ∞, so Ak = SΛkS−1 goes to A∞ = SΛ∞S−1 =

1
2

[
1 1
1 1

]

. The columns are just x1!

• If you chose different eigenvectors
[

c
c

]

,
[

d
−d

]

for λ1 and λ2, you’d get S =
[

c d
c −d

]

but Λ would

be the same. Or if you put them in the reverse order λ1 = 1
5 , λ2 = 1 you’d get S =

[
d c
−d c

]

and Λ =
[

1/5 0
0 1

]

. Unlike our other key factorizations A = LU and A = QR, diagonalization

A = SΛS−1 isn’t unique.
• Did you notice that A is a Markov matrix? That means we didn’t have to find all the eigenvectors
to know what happens to A∞ — we could use our Markov-matrix theory instead.
• Did you notice that our eigenvectors x1 and x2 were orthogonal? In fact, this always happens
for symmetric matrices — we can even pick the eigenvectors to be orthonormal, so A = QΛQ−1!
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There’s more to say about eigenvectors of symmetric matrices, as we’ll see next Wednesday.

Problem 8 Friday 11/3

The power method. We know one way to find eigenvectors — look for the roots of det(A−λI) = 0,
and then solve (A − λI)x = 0. For large matrices, this is hard — determinants are hard, and
factoring polynomials is hard. Here’s another way.
(a) Suppose A = SΛS−1, where S’s columns are the eigenvectors xi of A. Then A2 = . A100 =

.
(b) If v is any vector, we can write it as a linear combination of the eigenvectors: v = Sc =
c1x1 + . . . + cnxn. If x1 has eigenvalue λ1, etc., then Av = ASc = , A2v = , and A100v =

.
(c) If λ1 is the largest eigenvalue, which term in Akv is growing the fastest? If λ1 is twice as large
as any of the other λi, I would expect that term in A100v to be about times as large as any
of the others. So A100v is very close to . What if λ1 is only 5% larger than the others?
(d) Now go to Matlab, and start with a random 10-by-10 matrix A in Matlab (A=rand(10) works).
Pick a random 10-element vector v (v=rand(10,1) or pick your own!), and calculate u=(A∧100)*v.
(e) Let’s see if u really is an eigenvector. One way you could do this is to divide each element of
Au by the corresponding element of u, like this: (A*u)./u — here x./y gives the vector whose jth
entry is xj/yj. Is u an eigenvector? How can you tell?
(You can actually use this “power method” to find any eigenvalue, not just the largest. For example,
to find the smallest eigenvalue of A, look for the largest eigenvalue of A−1. Or find the eigenvalue
closest to c by looking for the largest eigenvalue of (A − cI)−1 — by varying c, you can find all
eigenvalues of A.)

Solution 8

(a) If A = SΛS−1, then A2 = SΛ2S−1 and A100 = SΛ100S−1.
(b) Then if v = Sc, then Av = ASc = SΛc = λ1c1x1+λ2c2x2+. . .+λncnxn, A2v = A2Sc = SΛ2c =
λ2

1c1x1+λ2
2c2x2+. . .+λ2

ncnxn, and A100v = A100Sc = SΛ100c = λ100
1 c1x1+λ100

2 c2x2+. . .+λ100
n cnxn.

(c) If λ1 is the largest eigenvalue, the term λk
1c1x1 is growing the fastest. If λ1 ≥ 2λj then

λ100
1 ≥ 2100λ100

j , so the λ1-term will be about 2100 times larger than any of the other terms.

(Assuming the ci are similar in size.) Even if λ1 ≥ 1.05λj , then λ100
1 ≥ (1.05)100λ100

j so the λ1-term

is about (1.05)100 ≈ 131 times as large as the next-largest term.

(d)

>> A=rand(10)

A =

0.6154 0.0579 0.0153 0.8381 0.1934 0.4966 0.7271 0.7948 0.1365 0.5828

0.7919 0.3529 0.7468 0.0196 0.6822 0.8998 0.3093 0.9568 0.0118 0.4235

0.9218 0.8132 0.4451 0.6813 0.3028 0.8216 0.8385 0.5226 0.8939 0.5155

0.7382 0.0099 0.9318 0.3795 0.5417 0.6449 0.5681 0.8801 0.1991 0.3340

0.1763 0.1389 0.4660 0.8318 0.1509 0.8180 0.3704 0.1730 0.2987 0.4329

0.4057 0.2028 0.4186 0.5028 0.6979 0.6602 0.7027 0.9797 0.6614 0.2259

0.9355 0.1987 0.8462 0.7095 0.3784 0.3420 0.5466 0.2714 0.2844 0.5798

0.9169 0.6038 0.5252 0.4289 0.8600 0.2897 0.4449 0.2523 0.4692 0.7604

0.4103 0.2722 0.2026 0.3046 0.8537 0.3412 0.6946 0.8757 0.0648 0.5298

0.8936 0.1988 0.6721 0.1897 0.5936 0.5341 0.6213 0.7373 0.9883 0.6405

>> v=rand(10,1)

v =

0.2091
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0.3798

0.7833

0.6808

0.4611

0.5678

0.7942

0.0592

0.6029

0.0503

>> u=A^100*v

u =

1.0e+71 *

2.1393

2.5237

3.2093

2.5616

1.9181

2.5731

2.4894

2.6112

2.1445

2.8755

(If you didn’t want to print that big matrix, you could use >> A=rand(10); (with a semicolon) — the semicolon tells

Matlab not to print a response.)

Any multiple of u is also an eigenvector, so we could throw away that extra factor 1.0 × 1071.

(e) Here’s what I got: so u is an eigenvector (with eigenvalue λ1 = 5.2173), because Au = 5.2173u.

>> (A*u)./u

ans =

5.2173

5.2173

5.2173

5.2173

5.2173

5.2173

5.2173

5.2173

5.2173

5.2173

Problem 9 Friday 11/3

Every projection matrix satisfies P 2 = P . (Pb is in the subspace, so P (Pb) = Pb.)
Do Problem #29 from section 6.2 in your book.
What are the eigenvalues of a projection matrix?

Solution 9

If y = Ax is any vector in the column space of A, then Ay = A2x = Ax = y, so every vector in the
column space is an eigenvector for λ = 1. (r independent vectors form a basis for this “eigenspace”)

The nullspace, as always, is the set of eigenvectors for λ = 0. (n-r independent vectors here)

A projection matrix always has P 2 = P , so its eigenvalues are 1 and 0. (with multiplicities r and
n − r, respectively)
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