18.06 Problem Set 6

Due Wednesday, Oct. 25, 2006 at **4:00 p.m.** in 2-106

Problem 1 Wednesday 10/18

Some theory of orthogonal matrices:

- (a) Show that, if two matrices Q_1 and Q_2 are orthogonal, then their product Q_1Q_2 is orthogonal.
- (b) Show that, if Q is a square orthogonal matrix, then its transpose Q^{T} is also orthogonal. (Hint: Q has an inverse. What is Q^{-1} ?)
- (c) Is the transpose of a non-square orthogonal matrix still orthogonal? Explain why or why not.

Problem 2 Wednesday 10/18

- (a) Do Gram-Schmidt elimination on $A = \begin{bmatrix} 1 & 5 & 3 \\ 2 & -2 & -1 \\ 3 & -5 & 9 \end{bmatrix}$ to find A = QR.
- (b) (You can do this by hand, but I recommend Matlab.) Find $A^{\mathsf{T}}A$, and then factor this (symmetric) matrix in your choice of two ways:
- LDU-factorization $A^{\mathsf{T}}A = LDL^{\mathsf{T}}$ ($U = L^{\mathsf{T}}$, since $A^{\mathsf{T}}A$ is symmetric)²
- Cholesky factorization $A^{\mathsf{T}}A = LL^{\mathsf{T}}$ (a variant of LDL^{T} ; the L is different!)³
- (c) How are L^{T} and R related? Gram-Schmidt on A is just elimination on $A^{\mathsf{T}}A!$

Problem 3 Wednesday 10/18

- (a) Write down the matrix P representing the projection onto the plane perpendicular to $a = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$. (Hint: $P = I P_1$, where P_1 is the projection _____.)
- (b) Now write down the matrix Q representing the reflection through that plane. (Q is sometimes called a "Householder matrix".) $Q = I 2vv^{\mathsf{T}}$ for some vector $v = \underline{\hspace{1cm}}$.
- (c) Show Q is an orthogonal matrix.

Problem 4 Friday 10/20

Do Problem #32 from section 5.1 in your book. (Uses Matlab.)

Problem 5 Friday 10/20

Do Problem #24 from section 5.1 in your book.

 $^{^{1}}$ Remember that an "orthogonal matrix" is really an orthonormal matrix; its columns are orthogonal and normalized.

²The slu.m Teaching Code only gives you $A^{\mathsf{T}}A = LU$; you'll have to calculate D on your own. Here's one way: extract the diagonal of U into a vector d with $d = \mathsf{diag}(U)$, then make a diagonal matrix out of d with $\mathsf{D}=\mathsf{diag}(d)$ (same function name, different functions!).

³If D has only positive pivots, then we can take its square root and write LDL^{T} even more simply, as $(L\sqrt{D})(\sqrt{D}^{\mathsf{T}}L^{\mathsf{T}}) = L_1L_1^{\mathsf{T}}$, where $L_1 = (L\sqrt{D})$. That's the Cholesky factorization, which you can get in Matlab by L=chol(A'A).

Problem 6 Monday 10/23, but you can start on Friday

Do Problem #14 from section 5.1 in your book.

Now compute these determinants using the big formula (with n! terms) or cofactor expansion (your choice). Which is easier?

(The determinants are det(A) = 36, det(B) = 5, if you want to check your work. Note that det(A) is wrong in the back of the book—sorry!)

Problem 7 Monday 10/23, but you can start on Friday

Suppose we fit the quadratic $y = C + Dt + Et^2$ to three points $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ by least-squares.

- (a) Write down the least-squares matrix V. $V\begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ (V is called the "Vandermonde matrix".)
- (b) Find $\det V$ by row operations.
- (c) Now write down the big formula (with 3! terms) for $\det V$.
- (d) Here's a trick for finding $\det V$ easily: we see from the big formula that $\det V$ is a polynomial in a_1, a_2, a_3 , and all 3! terms have degree _____. Now find the factors of $\det V$. The first two rows are equal when _____, so when _____, $\det V = 0$. Name a factor of $\det V$: _____. Now name two more factors of $\det V$, for the other two pairs of rows: _____, ____. How do you know any remaining factor of $\det(V)$ is constant? Now find the constant, and you're done!
- (e) When can we fit a quadratic *exactly* through three points?

Problem 8 Monday 10/23

Do Problem #25 from section 5.2 in your book.

Problem 9 Monday 10/23

Do Problem #14 from section 5.2 in your book.