
18.06 Problem Set 6

Due Wednesday, Oct. 25, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/18

Some theory of orthogonal matrices:
(a) Show that, if two matrices Q1 and Q2 are orthogonal, then their product Q1Q2 is orthogonal.1

(b) Show that, if Q is a square orthogonal matrix, then its transpose QT is also orthogonal. (Hint:
Q has an inverse. What is Q−1?)
(c) Is the transpose of a non-square orthogonal matrix still orthogonal? Explain why or why not.

Solution 1

(a) To see if a matrix Q is orthogonal, we can just check QTQ
?
= I. . . for Q1Q2, we check

(Q1Q2)
TQ1Q2 = QT

2 QT
1 Q1Q2 = QT

2 IQ2 = I
√

.

(b) To see if QT is orthogonal, we can just check (QT)TQT = QQT ?
= I. . . Q is orthogonal, so

QTQ = I. That means QT is the inverse of Q, and so QQT = I also.
√

(c) If Q is orthogonal, then its columns are linearly independent, so it has full column rank. But

then QT has full row rank, and can’t have full column rank unless it’s square. So its columns are
linearly dependent.

Problem 2 Wednesday 10/18

(a) Do Gram-Schmidt elimination on A=

2

4

1 5 3
2 −2 −1
3 −5 9

3

5 to find A = QR.

(b) (You can do this by hand, but I recommend Matlab.) Find ATA, and then factor this (sym-
metric) matrix in your choice of two ways:

• LDU -factorization ATA = LDLT (U = LT, since ATA is symmetric)2

• Cholesky factorization ATA = LLT (a variant of LDLT; the L is different!)3

(c) How are LT and R related? Gram-Schmidt on A is just elimination on ATA!

Solution 2

(a) By hand, I got Q =

[
1/

√

14 6/
√

40 1/
√

35
2/

√

14 0 −5/
√

35
3/

√

14 −2/
√

40 3/
√

35

]

and R =

[ √

14 −

√

14 2
√

14
0

√

40 0
0 0

√

35

]

.

(b) L =

[
1 0 0
−1 1 0
2 0 1

]

and D =

[
14 0 0
0 40 0
0 0 35

]

. For Cholesky:

1Remember that an “orthogonal matrix” is really an orthonormal matrix; its columns are orthogonal and normal-
ized.

2The slu.m Teaching Code only gives you ATA = LU ; you’ll have to calculate D on your own. Here’s one way:
extract the diagonal of U into a vector d with d = diag(U), then make a diagonal matrix out of d with D=diag(d)

(same function name, different functions!).
3If D has only positive pivots, then we can take its square root and write LDLT even more simply, as

(L
√

D)(
√

D
T

LT) = L1L
T
1 , where L1 = (L

√

D). That’s the Cholesky factorization, which you can get in Mat-
lab by L=chol(A’A).
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>> L=chol(S)

L =

3.7417 -3.7417 7.4833

0 6.3246 0.0000

0 0 5.9161

(This is

2

4

√

14 −

√

14 2
√

14
0

√

40 0
0 0

√

35

3

5, if you compute the exact values by hand.)

(c) If you used the Cholesky L, then LT = R exactly! (Or almost exactly: if you try [Q,R]=qr(A)

in Matlab, the first row of R is negated, because they used −q1 in Q where we used q1.) If you

used LDLT, then R =
√

DLT:
[√

14 0 0
0

√

40 0
0 0

√

35

][
1 −1 2
0 1 0
0 0 1

]

=

[√

14 −

√

14 2
√

14
0

√

40 0
0 0

√

35

]

Problem 3 Wednesday 10/18

(a) Write down the matrix P representing the projection onto the plane perpendicular to a =

[
1
2
−2

]

.

(Hint: P = I − P1, where P1 is the projection .)
(b) Now write down the matrix Q representing the reflection through that plane. (Q is sometimes

called a “Householder matrix”.) Q = I − 2vvT for some vector v = .
(c) Show Q is an orthogonal matrix.

Solution 3

(a) P = I − P1, where P1 is the projection onto the line along a =

[
1
2
−2

]

.

So P1 =
aaT

aTa
= 1

9 [ 1 2 −2 ]

[
1
2
−2

]

= 1
9

[
1 2 −2
2 4 −4
−2 −4 4

]

and P = I − P1 = 1
9

[
8 −2 2
−2 5 4
2 4 5

]

.

(b) Q = I − 2P1 = 1
9

[
7 −4 4
−4 1 8
4 8 1

]

.

Since P1 = 1
9aTa = vTv where v = a/3 =

[
1/3
2/3
−2/3

]

, Q = I − 2vvT where v = a/3 =

[
1/3
2/3
−2/3

]

.

(c) You can check the dot products of the columns qi and make sure qTi qi = 1, qTi qj = 0.

Here’s another way: since Q = I − 2vvT, QTQ = (IT − 2(vvT)T)(I − 2vvT) = (I − 2vvT)(I −
2vvT) = Q2, and Q is a reflection so Q2 = I. (Two reflections bring us back where we started!)4

Problem 4 Friday 10/20

Do Problem #32 from section 5.1 in your book. (Uses Matlab.)

Solution 4

It took me until n = 600 to get Matlab’s determinant function to overflow with an Inf(inity). I
should have asked you for more numbers!

>> det(rand(50))

4We’ve actually just shown that any reflection matrix, not just this Q, is orthogonal.
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ans =

6.5910e+05

>> det(rand(100))

ans =

5.1448e+25

>> det(rand(200))

ans =

2.4949e+80

>> det(rand(400))

ans =

1.1397e+219

>> det(rand(500))

ans =

3.4327e+298

>> det(rand(600))

ans =

Inf

If we really wanted to be sure these were “typical”, we might run each of these a few more times.
But these look good to me.
(The point of this is that determinants get really big, really fast! It’s hard to do computations
involving determinants when n gets big.)

Problem 5 Friday 10/20

Do Problem #24 from section 5.1 in your book.

Solution 5

detL = 1, detU = det A = −6, detU−1L−1 = −1/6, and det U−1L−1A = det I = 1.

Problem 6 Monday 10/23, but you can start on Friday

Do Problem #14 from section 5.1 in your book.
Now compute these determinants using the big formula (with n! terms) or cofactor expansion (your
choice). Which is easier?
(The determinants are det(A) = 36,det(B) = 5, if you want to check your work. Note that det(A)
is wrong in the back of the book—sorry!)

Solution 6

(Matrix A, elimination) det A = det





1 2 3 0

0 2 0 1
0 2 3 3
0 2 0 7



 = det






1 2 3 0

0 2 0 1

0 0 3 2

0 0 0 6




 = 1 · 2 · 3 · 6 = 36
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(Matrix B, elimination)

detB = det





2 −1 0 0
0 3/2 −1 0
0 −1 2 −1
0 0 −1 2





= det





2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 −1 2





= det








2 −1 0 0

0 3/2 −1 0

0 0 4/3 −1

0 0 0 5/4








= 2(3/2)(4/3)(5/4)

= 5

(Matrix A, cofactors)

detA = det

[
6 6 1
0 0 3
2 0 7

]

− 2 det

[
2 6 1
−1 0 3
0 0 7

]

+ 3det

[
2 6 1
−1 0 3
0 2 7

]

− 0

= (6 det
[

0 3
0 7

]

− 6 det
[

0 3
2 7

]

+ det
[

0 0
2 0

]

)

−2(2 det
[

0 3
0 7

]

− 6 det
[
−1 3
0 7

]

+ det
[
−1 0
0 0

]

)

+3(2 det
[

0 3
2 7

]

− 6 det
[
−1 3
0 7

]

+ det
[
−1 0
0 2

]

)

= (6(0) − 6(−6) + (0)) − 2(2(0) − 6(−7) + (0)) + 3(2(−6) − 6(−7) + (−2))

= (36) − 2(−42) + 3(28)

= 36

(Matrix B, the big formula)

detB = (2)(2)(2)(2)
︸ ︷︷ ︸

(1,2,3,4)

− (2)(2)(−1)(−1)
︸ ︷︷ ︸

(1,2,4,3)

− (2)(−1)(−1)(2)
︸ ︷︷ ︸

(1,3,2,4)

− (−1)(−1)(2)(2)
︸ ︷︷ ︸

(2,1,3,4)

+ (−1)(−1)(−1)(−1)
︸ ︷︷ ︸

(2,1,4,3)

+ (0) ± . . . ± (0)
︸ ︷︷ ︸

all others

= 16 − 4 − 4 − 4 + 1

= 5

I thought elimination was easier for det(A). For det(B), they both had strengths: the big formula
had lots of terms to check, but elimination had fractions. What did you think?

Problem 7 Monday 10/23, but you can start on Friday

Suppose we fit the quadratic y = C + Dt + Et2 to three points (a1, b1), (a2, b2), (a3, b3) by least-
squares.

(a) Write down the least-squares matrix V . V

[
C
D
E

]

=

[
b1
b2
b3

]

(V is called the “Vandermonde matrix”.)

(b) Find det V by row operations.
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(c) Now write down the big formula (with 3! terms) for detV .
(d) Here’s a trick for finding detV easily: we see from the big formula that det V is a polynomial
in a1, a2, a3, and all 3! terms have degree . Now find the factors of detV . The first two rows
are equal when , so when , det V = 0. Name a factor of detV : . Now name two more
factors of det V , for the other two pairs of rows: , . How do you know any remaining
factor of det(V ) is constant? Now find the constant, and you’re done!
(e) When can we fit a quadratic exactly through three points?

Solution 7

(a) V =

[
1 a1 a2

1

1 a2 a2

2

1 a3 a2

3

]

(b) V  

[
1 a1 a2

1

0 a2 − a1 a2

2
− a2

1

0 a3 − a1 a2

3
− a2

1

]

 

[
1 a1 a2

1

0 a2 − a1 a2

2
− a2

1

0 0 a2

3
− a3a2 − a3a1 + a2a1

]

so detV = (a2 − a1)(a
2
3 − a3a2 −

a3a1 + a2a1). That last bit factors, as we’ll see in (d).
(c) det V = a1a

2
2 − a1a

2
3 − a2a

2
1 + a2a

2
3 + a3a

2
1 − a3a

2
2.

(d) All the terms have degree 3. When a1 = a2, the first two rows are equal so det(V ) = 0;
that means (a1 − a2) is a factor of detV . The other two factors are (a2 − a3) and (a1 − a3), so
detV = (const.)(a1−a2)(a2−a3)(a1−a3) — all our factors together have degree 3, so the remaining
factor must be a constant! Check that constant: put a1 = 0, a2 = 1, a3 = 2 and get det = +2 so
the constant is −1.
(e) The equation is solvable exactly whenever det(V ) 6= 0, which happens when the three t-values
a1, a2, a3 are distinct.

Problem 8 Monday 10/23

Do Problem #25 from section 5.2 in your book.

Solution 8

(a) Think about the big formula. If we don’t pick any 0 entries, then the first two columns are
picked from A and the last two rows are from D. We can’t pick any columns or rows from B,
because there aren’t any left. Or think about elimination. Use the pivots in D to eliminate the
entries in B. (If D is missing pivots, then we have a zero row, so the det is zero!)

(b) Try

2

6

4

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

3

7

5
, which has det = −1 but all the blocks have det = 0!

(c) The matrix above works here too, since AD = CB =
[

0 0
0 0

]

.

Problem 9 Monday 10/23

Do Problem #14 from section 5.2 in your book.

Solution 9

det(B4) = +1det

[
1 −1
−1 2

−1 -1

]

+ 2det

[
1 −1
−1 2 −1

−1 2

]

= +1det
[

1 −1
−1 2

]

+ 2det

[
1 −1
−1 2 −1

−1 2

]

=

− det(B2) + 2det(B3). (Put in extra rows, and we have det(Bn+2) = − det(Bn) + 2det(Bn+1) for
any n > 0.) Since det(B3) = det(B2) = 1, B4 = 1 also.
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