18.06 Problem Set 6

Due Wednesday, Oct. 25, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/18
Some theory of orthogonal matrices:
(a) Show that, if two matrices Q_{1} and Q_{2} are orthogonal, then their product $Q_{1} Q_{2}$ is orthogonal. ${ }^{1}$
(b) Show that, if Q is a square orthogonal matrix, then its transpose Q^{\top} is also orthogonal. (Hint: Q has an inverse. What is Q^{-1} ?)
(c) Is the transpose of a non-square orthogonal matrix still orthogonal? Explain why or why not.

Solution 1

(a) To see if a matrix Q is orthogonal, we can just check $Q^{\top} Q \stackrel{?}{=} I \ldots$ for $Q_{1} Q_{2}$, we check $\left(Q_{1} Q_{2}\right)^{\top} Q_{1} Q_{2}=Q_{2}^{\top} Q_{1}^{\top} Q_{1} Q_{2}=Q_{2}^{\top} I Q_{2}=I \vee$.
(b) To see if $Q^{\boldsymbol{\top}}$ is orthogonal, we can just check $\left(Q^{\boldsymbol{\top}}\right)^{\top} Q^{\top}=Q Q^{\top} \stackrel{?}{=} I \ldots \quad Q$ is orthogonal, so $Q^{\top} Q=I$. That means Q^{\top} is the inverse of Q, and so $Q Q^{\top}=I$ also. \vee
(c) If Q is orthogonal, then its columns are linearly independent, so it has full column rank. But then Q^{\top} has full row rank, and can't have full column rank unless it's square. So its columns are linearly dependent.

Problem 2 Wednesday 10/18

(a) Do Gram-Schmidt elimination on $\mathrm{A}=\left[\begin{array}{ccc}1 & 5 & 3 \\ 2 & -2 & -1 \\ 3 & -5 & 9\end{array}\right]$ to find $A=Q R$.
(b) (You can do this by hand, but I recommend Matlab.) Find $A^{\top} \mathrm{A}$, and then factor this (symmetric) matrix in your choice of two ways:

- $L D U$-factorization $A^{\top} A=L D L^{\top}\left(U=L^{\top} \text {, since } A^{\top} A \text { is symmetric }\right)^{2}$
- Cholesky factorization $A^{\top} A=L L^{\top}$ (a variant of $L D L^{\top}$; the L is different!) ${ }^{3}$
(c) How are L^{\top} and R related? Gram-Schmidt on A is just elimination on $A^{\top} A$!

Solution 2

(a) By hand, I got $Q=\left[\begin{array}{ccc}1 / \sqrt{14} & 6 / \sqrt{40} & 1 / \sqrt{35} \\ 2 / \sqrt{14} & 0 & -5 / \sqrt{35} \\ 3 / \sqrt{14} & -2 / \sqrt{40} & 3 / \sqrt{35}\end{array}\right]$ and $R=\left[\begin{array}{ccc}\sqrt{14} & -\sqrt{14} & 2 \sqrt{14} \\ 0 & \sqrt{40} & 0 \\ 0 & 0 & \sqrt{35}\end{array}\right]$.
(b) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}14 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 35\end{array}\right]$. For Cholesky:

[^0]```
>> L=chol(S)
```

$\mathrm{L}=$

$$
\begin{array}{rrr}
3.7417 & -3.7417 & 7.4833 \\
0 & 6.3246 & 0.0000 \\
0 & 0 & 5.9161
\end{array}
$$

(This is $\left[\begin{array}{ccc}\sqrt{14} & -\sqrt{14} & 2 \sqrt{14} \\ 0 & \sqrt{40} & 0 \\ 0 & 0 & \sqrt{35}\end{array}\right]$, if you compute the exact values by hand.)
(c) If you used the Cholesky $L$, then $L^{\top}=R$ exactly! (Or almost exactly: if you try [Q, R] =qr (A) in Matlab, the first row of $R$ is negated, because they used $-q_{1}$ in $Q$ where we used $q_{1}$.) If you used $L D L^{\top}$, then $R=\sqrt{D} L^{\top}$ :

$$
\left[\begin{array}{ccc}
\sqrt{14} & 0 & 0 \\
0 & \sqrt{40} & 0 \\
0 & 0 & \sqrt{35}
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{14} & -\sqrt{14} & 2 \sqrt{14} \\
0 & \sqrt{40} & 0 \\
0 & 0 & \sqrt{35}
\end{array}\right]
$$

Problem 3 Wednesday 10/18
(a) Write down the matrix $P$ representing the projection onto the plane perpendicular to $a=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$. (Hint: $P=I-P_{1}$, where $P_{1}$ is the projection $\quad$.)
(b) Now write down the matrix $Q$ representing the reflection through that plane. ( $Q$ is sometimes called a "Householder matrix".) $Q=I-2 v v^{\top}$ for some vector $v=\ldots$.
(c) Show $Q$ is an orthogonal matrix.

## Solution 3

(a) $P=I-P_{1}$, where $P_{1}$ is the projection onto the line along $a=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$.

So $P_{1}=\frac{a a^{\top}}{a^{\top} a}=\frac{1}{9}\left[\begin{array}{lll}1 & 2 & -2\end{array}\right]\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4\end{array}\right]$ and $P=I-P_{1}=\frac{1}{9}\left[\begin{array}{ccc}8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5\end{array}\right]$.
(b) $Q=I-2 P_{1}=\frac{1}{9}\left[\begin{array}{ccc}7 & -4 & 4 \\ -4 & 1 & 8 \\ 4 & 8 & 1\end{array}\right]$.

Since $P_{1}=\frac{1}{9} a^{\top} a=v^{\top} v$ where $v=a / 3=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right], Q=I-2 v v^{\top}$ where $v=a / 3=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ -2 / 3\end{array}\right]$.
(c) You can check the dot products of the columns $q_{i}$ and make sure $q_{i}^{\top} q_{i}=1, q_{i}^{\top} q_{j}=0$.

Here's another way: since $Q=I-2 v v^{\top}, Q^{\top} Q=\left(I^{\top}-2\left(v v^{\top}\right)^{\top}\right)\left(I-2 v v^{\top}\right)=\left(I-2 v v^{\top}\right)(I-$ $\left.2 v v^{\top}\right)=Q^{2}$, and $Q$ is a reflection so $Q^{2}=I$. (Two reflections bring us back where we started! $)^{4}$

Problem 4 Friday 10/20
Do Problem \#32 from section 5.1 in your book. (Uses Matlab.)

## Solution 4

It took me until $n=600$ to get Matlab's determinant function to overflow with an Inf(inity). I should have asked you for more numbers!
>> det(rand(50))

[^1]```
ans =
    6.5910e+05
>> det(rand(100))
ans =
    5.1448e+25
>> det(rand(200))
ans =
    2.4949e+80
>> det(rand(400))
ans =
    1.1397e+219
>> det(rand(500))
ans =
    3.4327e+298
>> det(rand(600))
ans =
    Inf
```

If we really wanted to be sure these were "typical", we might run each of these a few more times. But these look good to me.
(The point of this is that determinants get really big, really fast! It's hard to do computations involving determinants when n gets big.)

Problem 5 Friday 10/20
Do Problem \#24 from section 5.1 in your book.

Solution 5

$\operatorname{det} L=1, \operatorname{det} U=\operatorname{det} A=-6, \operatorname{det} U^{-1} L^{-1}=-1 / 6$, and $\operatorname{det} U^{-1} L^{-1} A=\operatorname{det} I=1$.

Problem 6 Monday 10/23, but you can start on Friday
Do Problem \#14 from section 5.1 in your book.
Now compute these determinants using the big formula (with n ! terms) or cofactor expansion (your choice). Which is easier?
(The determinants are $\operatorname{det}(A)=36, \operatorname{det}(B)=5$, if you want to check your work. Note that $\operatorname{det}(A)$ is wrong in the back of the book-sorry!)

Solution 6

(Matrix A, elimination) $\operatorname{det} A=\operatorname{det}\left[\begin{array}{cccc}\boxed{1} & 2 & 3 & 0 \\ 0 & \boxed{2} & 0 & 1 \\ 0 & 2 & 3 & 3 \\ 0 & 2 & 0 & 7\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}\boxed{1} & 2 & 3 & 0 \\ 0 & \boxed{2} & 0 & 1 \\ 0 & 0 & \boxed{3} & 2 \\ 0 & 0 & 0 & 6\end{array}\right]=1 \cdot 2 \cdot 3 \cdot 6=36$
(Matrix B, elimination)

$$
\begin{aligned}
\operatorname{det} B & =\operatorname{det}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right] \\
& =2(3 / 2)(4 / 3)(5 / 4) \\
& =5
\end{aligned}
$$

(Matrix A, cofactors)

$$
\begin{aligned}
\operatorname{det} A= & \operatorname{det}\left[\begin{array}{lll}
6 & 6 & 1 \\
0 & 0 & 3 \\
2 & 0 & 7
\end{array}\right]-2 \operatorname{det}\left[\begin{array}{ccc}
2 & 6 & 1 \\
-1 & 0 & 3 \\
0 & 0 & 7
\end{array}\right]+3 \operatorname{det}\left[\begin{array}{ccc}
2 & 6 & 1 \\
-1 & 0 & 3 \\
0 & 2 & 7
\end{array}\right]-0 \\
= & \left(6 \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
0 & 7
\end{array}\right]-6 \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
2 & 7
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\right) \\
& -2\left(2 \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
0 & 7
\end{array}\right]-6 \operatorname{det}\left[\begin{array}{cc}
-1 & 3 \\
0 & 7
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\right) \\
& +3\left(2 \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
2 & 7
\end{array}\right]-6 \operatorname{det}\left[\begin{array}{cc}
-1 & 3 \\
0 & 7
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\right) \\
= & (6(0)-6(-6)+(0))-2(2(0)-6(-7)+(0))+3(2(-6)-6(-7)+(-2)) \\
= & (36)-2(-42)+3(28) \\
= & 36
\end{aligned}
$$

(Matrix B, the big formula)

$$
\begin{aligned}
\operatorname{det} B= & \underbrace{(2)(2)(2)(2)}_{(1,2,3,4)}-\underbrace{(2)(2)(-1)(-1)}_{(1,2,4,3)}-\underbrace{(2)(-1)(-1)(2)}_{(1,3,2,4)} \\
& -\underbrace{(-1)(-1)(2)(2)}_{(2,1,3,4)}+\underbrace{(-1)(-1)(-1)(-1)}_{(2,1,4,3)}+\underbrace{(0) \pm \ldots \pm(0)}_{\text {all others }} \\
= & 16-4-4-4+1 \\
= & 5
\end{aligned}
$$

I thought elimination was easier for $\operatorname{det}(A)$. For $\operatorname{det}(B)$, they both had strengths: the big formula had lots of terms to check, but elimination had fractions. What did you think?

Problem 7 Monday 10/23, but you can start on Friday
Suppose we fit the quadratic $y=C+D t+E t^{2}$ to three points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ by leastsquares.
(a) Write down the least-squares matrix $V . V\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ (V is called the "Vandermonde matrix".)
(b) Find $\operatorname{det} V$ by row operations.
(c) Now write down the big formula (with 3! terms) for $\operatorname{det} V$.
(d) Here's a trick for finding $\operatorname{det} V$ easily: we see from the big formula that $\operatorname{det} V$ is a polynomial in a_{1}, a_{2}, a_{3}, and all 3 ! terms have degree _. Now find the factors of $\operatorname{det} V$. The first two rows are equal when \qquad so when \qquad $\operatorname{det} V=0$. Name a factor of $\operatorname{det} V$: \qquad Now name two more factors of $\operatorname{det} V$, for the other two pairs of rows: __ _ _ How do you know any remaining factor of $\operatorname{det}(V)$ is constant? Now find the constant, and you're done!
(e) When can we fit a quadratic exactly through three points?

Solution 7

(a) $V=\left[\begin{array}{lll}1 & a_{1} & a_{1}^{2} \\ 1 & a_{2} & a_{2}^{2} \\ 1 & a_{3} & a_{3}^{2}\end{array}\right]$
(b) $V \rightsquigarrow\left[\begin{array}{ccc}1 & a_{1} & a_{1}^{2} \\ 0 & a_{2}-a_{1} & a_{2}^{2}-a_{1}^{2} \\ 0 & a_{3}-a_{1} & a_{3}^{2}-a_{1}^{2}\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}1 & a_{1} & a_{1}^{2} \\ 0 & a_{2}-a_{1} & a_{2}^{2}-a_{1}^{2} \\ 0 & 0 & a_{3}^{2}-a_{3} a_{2}-a_{3} a_{1}+a_{2} a_{1}\end{array}\right]$ so $\operatorname{det} V=\left(a_{2}-a_{1}\right)\left(a_{3}^{2}-a_{3} a_{2}-\right.$ $a_{3} a_{1}+a_{2} a_{1}$). That last bit factors, as we'll see in (d).
(c) $\operatorname{det} V=a_{1} a_{2}^{2}-a_{1} a_{3}^{2}-a_{2} a_{1}^{2}+a_{2} a_{3}^{2}+a_{3} a_{1}^{2}-a_{3} a_{2}^{2}$.
(d) All the terms have degree 3 . When $a_{1}=a_{2}$, the first two rows are equal so $\operatorname{det}(V)=0$; that means $\left(a_{1}-a_{2}\right)$ is a factor of $\operatorname{det} V$. The other two factors are $\left(a_{2}-a_{3}\right)$ and $\left(a_{1}-a_{3}\right)$, so $\operatorname{det} V=$ (const.) $\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right)\left(a_{1}-a_{3}\right)-$ all our factors together have degree 3 , so the remaining factor must be a constant! Check that constant: put $a_{1}=0, a_{2}=1, a_{3}=2$ and get det $=+2$ so the constant is -1 .
(e) The equation is solvable exactly whenever $\operatorname{det}(V) \neq 0$, which happens when the three t-values a_{1}, a_{2}, a_{3} are distinct.

Problem 8 Monday 10/23
Do Problem \#25 from section 5.2 in your book.

Solution 8

(a) Think about the big formula. If we don't pick any 0 entries, then the first two columns are picked from A and the last two rows are from D. We can't pick any columns or rows from B, because there aren't any left. Or think about elimination. Use the pivots in D to eliminate the entries in B. (If D is missing pivots, then we have a zero row, so the det is zero!)
(b) $\operatorname{Try}\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$, which has det $=-1$ but all the blocks have det $=0$!
(c) The matrix above works here too, since $A D=C B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Problem 9 Monday 10/23
Do Problem \#14 from section 5.2 in your book.

Solution 9

$\operatorname{det}\left(B_{4}\right)=+1 \operatorname{det}\left[\begin{array}{ccc}1 & -1 & \\ -1 & 2 & \\ & -1 & -1\end{array}\right]+2 \operatorname{det}\left[\begin{array}{ccc}1 & -1 & \\ -1 & 2 & -1 \\ & -1 & 2\end{array}\right]=+1 \operatorname{det}\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]+2 \operatorname{det}\left[\begin{array}{ccc}1 & -1 & - \\ -1 & 2 & -1 \\ & -1 & 2\end{array}\right]=$ $-\operatorname{det}\left(B_{2}\right)+2 \operatorname{det}\left(B_{3}\right)$. (Put in extra rows, and we have $\operatorname{det}\left(B_{n+2}\right)=-\operatorname{det}\left(B_{n}\right)+2 \operatorname{det}\left(B_{n+1}\right)$ for any $n>0$.) Since $\operatorname{det}\left(B_{3}\right)=\operatorname{det}\left(B_{2}\right)=1, B_{4}=1$ also.

[^0]: ${ }^{1}$ Remember that an "orthogonal matrix" is really an orthonormal matrix; its columns are orthogonal and normalized.
 ${ }^{2}$ The slu.m Teaching Code only gives you $A^{\top} A=L U$; you'll have to calculate D on your own. Here's one way: extract the diagonal of U into a vector d with $\mathrm{d}=\operatorname{diag}(\mathrm{U})$, then make a diagonal matrix out of d with $\mathrm{D}=\mathrm{diag}(\mathrm{d})$ (same function name, different functions!).
 ${ }^{3}$ If D has only positive pivots, then we can take its square root and write $L D L^{\top}$ even more simply, as $(L \sqrt{D})\left(\sqrt{D}^{\top} L^{\top}\right)=L_{1} L_{1}^{\top}$, where $L_{1}=(L \sqrt{D})$. That's the Cholesky factorization, which you can get in Matlab by $\mathrm{L}=\mathrm{chol}\left(\mathrm{A}^{\prime} \mathrm{A}\right)$.

[^1]: ${ }^{4}$ We've actually just shown that any reflection matrix, not just this Q, is orthogonal.

