18.06 Problem Set 5 Due Wednesday, Oct. 18, 2006 at **4:00 p.m.** in 2-106

Problem 1 Wednesday 10/11

For each of these, find a matrix satisfying the conditions given or explain why none can exist.

(a) Column space contains
$$\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\-2\\1\\1 \end{bmatrix}$, and nullspace contains $\begin{bmatrix} 3\\2\\1\\1 \end{bmatrix}$
(b) Row space contains $\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-2\\1\\1 \end{bmatrix}$, and nullspace contains $\begin{bmatrix} 3\\2\\1\\1 \end{bmatrix}$
(c) $Ax = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ is solvable; $A^{\mathsf{T}} \begin{bmatrix} 3\\2\\1 \end{bmatrix}$ is zero.

(d) A nonzero matrix where every row is perpendicular to every column

(e) Rows sum to a row of zeros, and columns sum to $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$

Problem 2 Wednesday 10/11

Do Problem #12 from section 4.1 in your book.

Problem 3 Wednesday 10/11

Do Problem #26 from section 4.1 in your book.

Problem 4 Friday 10/13

Do Problem #2 from section 4.2 in your book. What is the permutation matrix P? What is the error e = b - p?

Problem 5 Friday 10/13

Do Problem #13 from section 4.2 in your book. Do this two different ways:

(a) geometrically, tell what subspace we're projecting b orthogonally onto

(b) algebraically, calculate $P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$

Problem 6 Friday 10/13

A subspace **S** has basis
$$\left\{ a = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 0 \\ -1 \\ 2 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 5 \\ 4 \\ -1 \end{bmatrix} \right\}.$$

(a) What are the dot products $a^{\dagger}b$, $a^{\dagger}c$, $b^{\dagger}c$? Are the basis vectors orthogonal?

Now let's compute a new basis $\left\{\hat{a}, \hat{b}, \hat{c}\right\}$ for the same subspace. Start by letting $\hat{a} = a$.

(b) Compute the projection Pb of b onto the line described by a. What is the error (b - Pb)? Call this error vector \hat{b} .

(c) Compute the projection P_1c of c onto the plane described by a and b. What is the error $(c - P_1c)$? Call this error vector \hat{c} . Does \hat{c} change if we project onto the plane with basis \hat{a} and \hat{b} instead? Why or why not?

(d) What are the dot products $\hat{a}^{\mathsf{T}}\hat{b}$, $\hat{a}^{\mathsf{T}}\hat{c}$, $\hat{b}^{\mathsf{T}}\hat{c}$? Are the new basis vectors orthogonal? (This process for finding an orthogonal basis is called the "Gram-Schmidt Process" — the full version also scales each vector to "normalize" it to unit length.)

(f) Explain how you know $\{\hat{a}, \hat{b}, \hat{c}\}$ is a basis for **S**. (Don't forget to show it both spans the subspace, and is linearly independent!)

Problem 7 Monday 10/16

Do Problem #17 from section 4.3 in your book.

Problem 8 Monday 10/16

Do Problem #27 from section 4.3 in your book.