18.06 Problem Set 5

Due Wednesday, Oct. 18, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/11

For each of these, find a matrix satisfying the conditions given or explain why none can exist.
(a) Column space contains $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, and nullspace contains $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(b) Row space contains $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, and nullspace contains $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(c) $A x=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is solvable; $A^{\boldsymbol{\top}}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is zero.
(d) A nonzero matrix where every row is perpendicular to every column
(e) Rows sum to a row of zeros, and columns sum to $\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$

Problem 2 Wednesday 10/11
Do Problem \#12 from section 4.1 in your book.

Problem 3 Wednesday 10/11
Do Problem \#26 from section 4.1 in your book.

Problem 4 Friday 10/13
Do Problem \#2 from section 4.2 in your book. What is the permutation matrix P ? What is the error $e=b-p$?

Problem 5 Friday 10/13
Do Problem \#13 from section 4.2 in your book. Do this two different ways:
(a) geometrically, tell what subspace we're projecting b orthogonally onto
(b) algebraically, calculate $P=A\left(A^{\top} A\right)^{-1} A^{\top}$

Problem 6 Friday 10/13
A subspace \mathbf{S} has basis $\left\{a=\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{c}5 \\ 0 \\ -1 \\ 2\end{array}\right], c=\left[\begin{array}{c}0 \\ 5 \\ 4 \\ -1\end{array}\right]\right\}$.
(a) What are the dot products $a^{\top} b, a^{\top} c, b^{\top} c$? Are the basis vectors orthogonal?

Now let's compute a new basis $\{\hat{a}, \hat{b}, \hat{c}\}$ for the same subspace. Start by letting $\hat{a}=a$.
(b) Compute the projection $P b$ of b onto the line described by a. What is the error $(b-P b)$? Call this error vector \hat{b}.
(c) Compute the projection $P_{1} c$ of c onto the plane described by a and b. What is the error $\left(c-P_{1} c\right)$? Call this error vector \hat{c}. Does \hat{c} change if we project onto the plane with basis \hat{a} and \hat{b} instead? Why or why not?
(d) What are the dot products $\hat{a}^{\top} \hat{b}, \hat{a}^{\top} \hat{c}, \hat{b}^{\top} \hat{c}$? Are the new basis vectors orthogonal? (This process for finding an orthogonal basis is called the "Gram-Schmidt Process" - the full version also scales each vector to "normalize" it to unit length.)
(e) Find the matrix R relating the old basis and the new basis: $\left.\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]\left[\begin{array}{lll}? & ? & ? \\ ? & ? \\ ? & ? & ?\end{array}\right]$
(f) Explain how you know $\{\hat{a}, \hat{b}, \hat{c}\}$ is a basis for \mathbf{S}. (Don't forget to show it both spans the subspace, and is linearly independent!)

Problem 7 Monday 10/16
Do Problem \#17 from section 4.3 in your book.

Problem 8 Monday 10/16
Do Problem \#27 from section 4.3 in your book.

