18.06 Problem Set 5

Due Wednesday, Oct. 18, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/11

For each of these, find a matrix satisfying the conditions given or explain why none can exist.
(a) Column space contains $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, and nullspace contains $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(b) Row space contains $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, and nullspace contains $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(c) $A x=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is solvable; $A^{\boldsymbol{\top}}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is zero.
(d) A nonzero matrix where every row is perpendicular to every column
(e) Rows sum to a row of zeros, and columns sum to $\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$

Solution 1

(a) $\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -5\end{array}\right]$
(b) Anything with $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ in $\mathbf{N}(A)$ (and no other basis vectors!) automatically gives us the correct row space: $\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]$, for example.
(c) Can't do this: the column space and the left nullspace have to be orthogonal, but the vectors we're given from each have dot product $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=3+0-1=2 \neq 0$.
(d) I'll give you two examples: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$.
(e) Not possible (for any row length): $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the left nullspace, so the column sum (which is in the column space) would have to be orthogonal to this.

Problem 2 Wednesday 10/11
Do Problem \#12 from section 4.1 in your book.

Solution 2

See figure.

Problem 3 Wednesday 10/11
Do Problem \#26 from section 4.1 in your book.

Solution 3

I used $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$; then $A^{\top} A$ is $S=\left[\begin{array}{ccc}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]$. All the off-diagonal entries $s_{i j}=A_{i}^{\top} A_{j}$ are zero, because the columns A_{i} and A_{j} are perpendicular.

Figure 1: Solution to problem \#2.

Problem 4 Friday 10/13
Do Problem \#2 from section 4.2 in your book. What is the permutation matrix P ? What is the error $e=b-p$?

Solution 4

For (a), $p=\left[\begin{array}{c}\cos \theta \\ 0\end{array}\right], P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and $e=\left[\begin{array}{c}0 \\ \sin \theta\end{array}\right]$.
For (b), $p=\left[\begin{array}{l}0 \\ 0\end{array}\right], P=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, and $e=b=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Problem 5 Friday 10/13
Do Problem \#13 from section 4.2 in your book. Do this two different ways:
(a) geometrically, tell what subspace we're projecting b orthogonally onto
(b) algebraically, calculate $P=A\left(A^{\top} A\right)^{-1} A^{\top}$

Solution 5

(a) Our subspace is just the hyperplane ${ }^{1} x_{4}=0$, so we project b straight down onto it to get

[^0]$p=P b=(1,2,3,0)$.

(b) Here $A^{\top} A$ is the 3-by-3 identity matrix, so $P=A A^{\top}=\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0\end{array}\right]$ and $p=P b=(1,2,3,0)$.

Problem 6 Friday 10/13
A subspace \mathbf{S} has basis $\left\{a=\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{c}5 \\ 0 \\ -1 \\ 2\end{array}\right], c=\left[\begin{array}{c}0 \\ 5 \\ 4 \\ -1\end{array}\right]\right\}$.
(a) What are the dot products $a^{\top} b, a^{\top} c, b{ }^{\top} c$? Are the basis vectors orthogonal?

Now let's compute a new basis $\{\hat{a}, \hat{b}, \hat{c}\}$ for the same subspace. Start by letting $\hat{a}=a$.
(b) Compute the projection Pb of b onto the line described by a. What is the error ($b-\mathrm{Pb}$)? Call this error vector \hat{b}.
(c) Compute the projection $P_{1} c$ of c onto the plane described by a and b. What is the error $\left(c-P_{1} c\right)$? Call this error vector \hat{c}. Does \hat{c} change if we project onto the plane with basis \hat{a} and \hat{b} instead? Why or why not?
(d) What are the dot products $\hat{a}^{\top} \hat{b}, \hat{a}^{\top} \hat{c}, \hat{b}^{\top} \hat{c}$? Are the new basis vectors orthogonal?
(This process for finding an orthogonal basis is called the "Gram-Schmidt Process" - the full version also scales each vector to "normalize" it to unit length.)
(e) Find the matrix R relating the old basis and the new basis: $\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ? \\ ? & ?\end{array}\right]$
(f) Explain how you know $\{\hat{a}, \hat{b}, \hat{c}\}$ is a basis for \mathbf{S}. (Don't forget to show it both spans the subspace, and is linearly independent!)

Solution 6

(a) No, they're not orthogonal: $a^{\boldsymbol{\top}} b=12, a^{\boldsymbol{\top}} c=-6, b^{\boldsymbol{\top}} c=-6$.
(b) $P b=\left[\begin{array}{c}4 \\ -2 \\ 0 \\ 2\end{array}\right]$, so $\hat{b}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 0\end{array}\right]$.
(c) $P_{1} c=\left[\begin{array}{c}-1 \\ 3 \\ -1 \\ -1\end{array}\right]$, so $\hat{c}=\left[\begin{array}{l}1 \\ 2 \\ 5 \\ 0\end{array}\right]$.

The subspace we're projecting onto is the same, whether we use $\{a, b\}$ or $\{\hat{a}, \hat{b}\}$ as the basis for it, so \hat{c} is the same either way.
(d) All these dot products are zero, so the new basis vectors are orthogonal.
(e) $\left[\begin{array}{ccc}2 & 5 & 0 \\ -1 & 0 & 5 \\ 0 & -1 & 4 \\ 1 & 2 & -1\end{array}\right]=\left[\begin{array}{ccc}2 & 1 & 1 \\ -1 & 2 & 2 \\ 0 & -1 & 5 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. (Notice R is upper-triangular!)
(f) All the old basis vectors are linear combinations of the new ones, $(A=\hat{A} R)$ and all the new basis vectors are linear combinations of the old ones ($\hat{A}=A R^{-1}$, since R is invertible!) So they span the same subspace, and they have the same dimension.

Problem 7 Monday 10/16
Do Problem \#17 from section 4.3 in your book.

Figure 2: Graph of line for problem \#7. The three vertical segments are the components of our error vector e, whose length we minimize with least-squares.

Solution 7

Plugging in $(t, b)=(-1,7),(1,7),(2,21)$ gives us the three equations $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{c}7 \\ 7 \\ 21\end{array}\right]$.
There are lots of solutions to this system $A \hat{x}=b$; for the least squares solution, I multiply by A^{\top} :
$A^{\top} A \hat{x}=A^{\top} b \quad\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$
The unique solution to this system is $(C, D)=(9,4)$ and our line is $b=9+4 t$.
(We can write the solution to $A^{T} A \hat{x}=A^{T_{b}}$ (the least-squares solution to $A \hat{x}=b$) as $\hat{x}=$ $\left[\left(A^{T} A\right)^{-1} A^{T}\right] b$. That thing in brackets is sometimes called the "pseudoinverse" A^{+}. It works almost like a regular inverse:
When A is invertible, the solution to $A x=b$ is $x=A^{-1} b$.
When A isn't invertible, ${ }^{2}$ a least-squares solution to $A \hat{x}=b$ is $\hat{x}=A^{+} b$.)

Problem 8 Monday 10/16
Do Problem \#27 from section 4.3 in your book.

Solution 8

The equation $A x=b$ we'd like to "solve" approximately, by least-squares: $\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 4\end{array}\right]$ To "solve" it, multiply by A^{\top} to get the 'normal equation' $A^{\top} A \hat{x}=A^{\top} b$: $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{c}8 \\ -3 \\ -3\end{array}\right]$
(Notice how $A^{T} A$ is diagonal - that's because A's columns were orthogonal. Orthogonality makes life easier!)
This has the solution $C=2, D=E=-3 / 2$, so the equation of the plane of 'best fit' is $2-\frac{3}{2} x-\frac{3}{2} y=$ b. At $(x, y)=(0,0)$ this is just $C=2$, the average of the b-values $0,1,3,4$.

[^1]
[^0]: ${ }^{1}$ A 1-dimensional subspace is a "line", a 2-dimensional subspace is a "plane", and an ($n-1$)-dimensional subspace is a "hyperplane". I think an $(n-2)$-dimensional subspace is a "hyperline".

[^1]: ${ }^{2}$ If $\left(A^{\top} A\right)^{-1}$ doesn't exist, the formula above won't work and we have to define A^{+}a different way.

