
18.06 Problem Set 5

Due Wednesday, Oct. 18, 2006 at 4:00 p.m. in 2-106

Problem 1 Wednesday 10/11

For each of these, find a matrix satisfying the conditions given or explain why none can exist.

(a) Column space contains

2

4

−1

1

1

3

5 and

2

4

1

−2

1

3

5, and nullspace contains

2

4

3

2

1

3

5

(b) Row space contains

2

4

−1

1

1

3

5 and

2

4

1

−2

1

3

5, and nullspace contains

2

4

3

2

1

3

5

(c) Ax =

[

1

0

−1

]

is solvable; AT

[

3

2

1

]

is zero.

(d) A nonzero matrix where every row is perpendicular to every column

(e) Rows sum to a row of zeros, and columns sum to

2

4

2

3

−1

3

5

Solution 1

(a)

2

4

−1 1 1

1 −2 1

1 1 −5

3

5

(b) Anything with

2

4

3

2

1

3

5 in N(A) (and no other basis vectors!) automatically gives us the correct

row space:

2

4

1 0 −3

0 1 −2

0 0 0

3

5, for example.

(c) Can’t do this: the column space and the left nullspace have to be orthogonal, but the vectors

we’re given from each have dot product [ 1 0 −1 ]

[

3

2

1

]

= 3 + 0 − 1 = 2 6= 0.

(d) I’ll give you two examples: A =
[

0 1

0 0

]

, B =
[

1 1

−1 −1

]

.

(e) Not possible (for any row length):

2

4

1

1

1

3

5 is in the left nullspace, so the column sum (which is in

the column space) would have to be orthogonal to this.

Problem 2 Wednesday 10/11

Do Problem #12 from section 4.1 in your book.

Solution 2

See figure.

Problem 3 Wednesday 10/11

Do Problem #26 from section 4.1 in your book.

Solution 3

I used A =

[

2 −1 −1

−1 2 −1

−1 −1 2

]

; then ATA is S =

[

6 0 0

0 6 0

0 0 6

]

. All the off-diagonal entries sij = AT
i Aj are

zero, because the columns Ai and Aj are perpendicular.
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Figure 1: Solution to problem #2.

Problem 4 Friday 10/13

Do Problem #2 from section 4.2 in your book. What is the permutation matrix P? What is the
error e = b − p?

Solution 4

For (a), p =
[

cos θ

0

]

, P =
[

1 0

0 0

]

, and e =
[

0

sin θ

]

.

For (b), p =
[

0

0

]

, P = 1
2

[

1 −1

−1 1

]

, and e = b =
[

1

1

]

.

Problem 5 Friday 10/13

Do Problem #13 from section 4.2 in your book. Do this two different ways:
(a) geometrically, tell what subspace we’re projecting b orthogonally onto

(b) algebraically, calculate P = A(ATA)−1AT

Solution 5

(a) Our subspace is just the hyperplane1 x4 = 0, so we project b straight down onto it to get

1A 1-dimensional subspace is a “line”, a 2-dimensional subspace is a “plane”, and an (n−1)-dimensional subspace
is a “hyperplane”. I think an (n − 2)-dimensional subspace is a “hyperline”.
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p = Pb = (1, 2, 3, 0).

(b) Here ATA is the 3-by-3 identity matrix, so P = AAT =





1

1

1

0



 and p = Pb = (1, 2, 3, 0).

Problem 6 Friday 10/13

A subspace S has basis







a =





2

−1

0

1



, b =





5

0

−1

2



, c =





0

5

4

−1











.

(a) What are the dot products aTb, aTc, bTc? Are the basis vectors orthogonal?

Now let’s compute a new basis
{

â, b̂, ĉ
}

for the same subspace. Start by letting â = a.

(b) Compute the projection Pb of b onto the line described by a. What is the error (b −Pb)? Call
this error vector b̂.
(c) Compute the projection P1c of c onto the plane described by a and b. What is the error
(c − P1c)? Call this error vector ĉ. Does ĉ change if we project onto the plane with basis â and b̂
instead? Why or why not?

(d) What are the dot products âTb̂, âTĉ, b̂Tĉ? Are the new basis vectors orthogonal?
(This process for finding an orthogonal basis is called the “Gram-Schmidt Process” — the full
version also scales each vector to “normalize” it to unit length.)

(e) Find the matrix R relating the old basis and the new basis: [ a b c ] = [ â b̂ ĉ ]

[

? ? ?

? ? ?

? ? ?

]

(f) Explain how you know
{

â, b̂, ĉ
}

is a basis for S. (Don’t forget to show it both spans the

subspace, and is linearly independent!)

Solution 6

(a) No, they’re not orthogonal: aTb = 12, aTc = −6, bTc = −6.

(b) Pb =





4

−2

0

2



, so b̂ =





1

2

−1

0



.

(c) P1c =





−1

3

−1

−1



, so ĉ =





1

2

5

0



.

The subspace we’re projecting onto is the same, whether we use {a, b} or
{

â, b̂
}

as the basis for it,

so ĉ is the same either way.
(d) All these dot products are zero, so the new basis vectors are orthogonal.

(e)

2

6

4

2 5 0

−1 0 5

0 −1 4

1 2 −1

3

7

5
=

2

6

4

2 1 1

−1 2 2

0 −1 5

1 0 0

3

7

5

2

4

1 2 −1

0 1 1

0 0 1

3

5. (Notice R is upper-triangular!)

(f) All the old basis vectors are linear combinations of the new ones, (A = ÂR) and all the new
basis vectors are linear combinations of the old ones (Â = AR−1, since R is invertible!) So they
span the same subspace, and they have the same dimension.

Problem 7 Monday 10/16

Do Problem #17 from section 4.3 in your book.
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Figure 2: Graph of line for problem #7. The three vertical segments are the components of our
error vector e, whose length we minimize with least-squares.

Solution 7

Plugging in (t, b) = (−1, 7), (1, 7), (2, 21) gives us the three equations

2

4

1 −1

1 1

1 2

3

5

»

C

D

–

=

2

4

7

7

21

3

5.

There are lots of solutions to this system Ax̂ = b; for the least squares solution, I multiply by AT:

ATAx̂ = ATb
[

3 2

2 6

][

C

D

]

=
[

35

42

]

The unique solution to this system is (C,D) = (9, 4) and our line is b = 9 + 4t.

(We can write the solution to ATAx̂ = ATb (the least-squares solution to Ax̂ = b) as x̂ =

[(ATA)−1AT]b. That thing in brackets is sometimes called the “pseudoinverse” A+. It works
almost like a regular inverse:
When A is invertible, the solution to Ax = b is x = A−1b.
When A isn’t invertible,2 a least-squares solution to Ax̂ = b is x̂ = A+b.)

Problem 8 Monday 10/16

Do Problem #27 from section 4.3 in your book.

Solution 8

The equation Ax = b we’d like to “solve” approximately, by least-squares:





1 1 0

1 0 1

1 −1 0

1 0 −1





[

C

D

E

]

=





0

1

3

4





To “solve” it, multiply by AT to get the ‘normal equation’ ATAx̂ = ATb:

[

4 0 0

0 2 0

0 0 2

][

C

D

E

]

=

[

8

−3

−3

]

(Notice how ATA is diagonal — that’s because A’s columns were orthogonal. Orthogonality makes
life easier!)
This has the solution C = 2, D = E = −3/2, so the equation of the plane of ‘best fit’ is 2− 3

2
x− 3

2
y =

b. At (x, y) = (0, 0) this is just C = 2, the average of the b-values 0,1,3,4.

2If (AT
A)−1 doesn’t exist, the formula above won’t work and we have to define A

+ a different way.
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