18.06 Problem Set 5 Due Wednesday, Oct. 18, 2006 at **4:00 p.m.** in 2-106

Problem 1 Wednesday 10/11

For each of these, find a matrix satisfying the conditions given or explain why none can exist.

(a) Column space contains
$$\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 1\\-2\\1\\1 \end{bmatrix}$, and nullspace contains $\begin{bmatrix} 3\\2\\1\\1 \end{bmatrix}$
(b) Row space contains $\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-2\\1\\1 \end{bmatrix}$, and nullspace contains $\begin{bmatrix} 3\\2\\1\\1 \end{bmatrix}$
(c) $Ax = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ is solvable; $A^{\mathsf{T}} \begin{bmatrix} 3\\2\\1 \end{bmatrix}$ is zero.

(d) A nonzero matrix where every row is perpendicular to every column

(e) Rows sum to a row of zeros, and columns sum to $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$

Solution 1

(a)
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -5 \end{bmatrix}$$

(b) Anything with $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ in $\mathbf{N}(A)$ (and no other basis vectors!) automatically gives us the correct row space: $\begin{bmatrix} 1 & 0 & -3\\ 0 & 1 & -2\\ 0 & 0 & 0 \end{bmatrix}$, for example.

(c) Can't do this: the column space and the left nullspace have to be orthogonal, but the vectors we're given from each have dot product $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = 3 + 0 - 1 = 2 \neq 0$. (d) I'll give you two examples: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. (e) Not possible (for any row length): $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is in the left nullspace, so the column sum (which is in

the column space) would have to be orthogonal to this.

Problem 2 Wednesday 10/11

Do Problem #12 from section 4.1 in your book.

Solution 2

See figure.

Problem 3 Wednesday 10/11

Do Problem #26 from section 4.1 in your book.

Solution 3

I used $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$; then $A^{\mathsf{T}}A$ is $S = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$. All the off-diagonal entries $s_{ij} = A_i^{\mathsf{T}}A_j$ are zero, because the columns A_i and A_j are perpendicular.

Figure 1: Solution to problem #2.

Problem 4 Friday 10/13

Do Problem #2 from section 4.2 in your book. What is the permutation matrix P? What is the error e = b - p?

Solution 4

Problem 5 Friday 10/13

Do Problem #13 from section 4.2 in your book. Do this two different ways:

(a) geometrically, tell what subspace we're projecting b orthogonally onto

(b) algebraically, calculate $P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$

Solution 5

(a) Our subspace is just the hyperplane¹ $x_4 = 0$, so we project b straight down onto it to get

¹A 1-dimensional subspace is a "line", a 2-dimensional subspace is a "plane", and an (n-1)-dimensional subspace is a "hyperplane". I think an (n-2)-dimensional subspace is a "hyperplane".

p = Pb = (1, 2, 3, 0).(b) Here $A^{\mathsf{T}}A$ is the 3-by-3 identity matrix, so $P = AA^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & \\ & 1 & \\ & & 1 \end{bmatrix}$ and p = Pb = (1, 2, 3, 0).

Problem 6 Friday 10/13

A subspace **S** has basis
$$\left\{ a = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 0 \\ -1 \\ 2 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 5 \\ 4 \\ -1 \end{bmatrix} \right\}.$$

(a) What are the dot products $a^{\dagger}b$, $a^{\dagger}c$, $b^{\dagger}c$? Are the basis vectors orthogonal?

Now let's compute a new basis $\{\hat{a}, \hat{b}, \hat{c}\}$ for the same subspace. Start by letting $\hat{a} = a$. (b) Compute the projection Pb of b onto the line described by a. What is the error (b - Pb)? Call this error vector \ddot{b} .

(c) Compute the projection P_1c of c onto the plane described by a and b. What is the error $(c - P_1 c)$? Call this error vector \hat{c} . Does \hat{c} change if we project onto the plane with basis \hat{a} and \hat{b} instead? Why or why not?

(d) What are the dot products $\hat{a}^{\mathsf{T}}\hat{b}$, $\hat{a}^{\mathsf{T}}\hat{c}$, $\hat{b}^{\mathsf{T}}\hat{c}$? Are the new basis vectors orthogonal?

(This process for finding an orthogonal basis is called the "Gram-Schmidt Process" — the full version also scales each vector to "normalize" it to unit length.)

(f) Explain how you know $\{\hat{a}, \hat{b}, \hat{c}\}$ is a basis for **S**. (Don't forget to show it both spans the subspace, and is linearly independent!)

Solution 6

(a) No, they're not orthogonal:
$$a^{\mathsf{T}}b = 12, a^{\mathsf{T}}c = -6, b^{\mathsf{T}}c = -6$$

(b) $Pb = \begin{bmatrix} 4\\-2\\0\\2 \end{bmatrix}, \text{ so } \hat{b} = \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}.$
(c) $P_1c = \begin{bmatrix} -1\\3\\-1\\-1 \end{bmatrix}, \text{ so } \hat{c} = \begin{bmatrix} 1\\2\\5\\0 \end{bmatrix}.$

The subspace we're projecting onto is the same, whether we use $\{a, b\}$ or $\{\hat{a}, \hat{b}\}$ as the basis for it, so \hat{c} is the same either way.

(d) All these dot products are zero, so the new basis vectors are orthogonal.

(e) $\begin{bmatrix} 2 & 5 & 0 \\ -1 & 0 & 5 \\ 0 & -1 & 4 \\ 1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 2 & 2 \\ 0 & -1 & 5 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. (Notice *R* is upper-triangular!)

(f) All the old basis vectors are linear combinations of the new ones, $(A = \hat{A}R)$ and all the new basis vectors are linear combinations of the old ones ($\hat{A} = AR^{-1}$, since R is invertible!) So they span the same subspace, and they have the same dimension.

Problem 7 Monday 10/16

Do Problem #17 from section 4.3 in your book.

Figure 2: Graph of line for problem #7. The three vertical segments are the components of our error vector e, whose length we minimize with least-squares.

Solution 7

Plugging in (t,b) = (-1,7), (1,7), (2,21) gives us the three equations $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}.$

There are lots of solutions to this system $A\hat{x} = b$; for the least squares solution, I multiply by A^{\dagger} : $A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b \qquad \begin{bmatrix} 3 & 2\\ 2 & 6 \end{bmatrix} \begin{bmatrix} C\\ D \end{bmatrix} = \begin{bmatrix} 35\\ 42 \end{bmatrix}$ The unique solution to this system is (C, D) = (9, 4) and our line is b = 9 + 4t.

(We can write the solution to $A^T A \hat{x} = A^T b$ (the least-squares solution to $A \hat{x} = b$) as $\hat{x} = b$ $[(A^{T}A)^{-1}A^{T}]b$. That thing in brackets is sometimes called the "pseudoinverse" A^{+} . It works almost like a regular inverse:

When A is invertible, the solution to Ax = b is $x = A^{-1}b$. When A isn't invertible,² a least-squares solution to $A\hat{x} = b$ is $\hat{x} = A^+b$.)

Problem 8 Monday 10/16

Do Problem #27 from section 4.3 in your book.

Solution 8

The equation Ax = b we'd like to "solve" approximately, by least-squares: $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix}$ To "solve" it, multiply by A^{T} to get the 'normal equation' $A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b$: $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 8 \\ -3 \\ -3 \end{bmatrix}$

(Notice how $A^{T}A$ is diagonal — that's because A's columns were orthogonal. Orthogonality makes life easier!)

This has the solution C = 2, D = E = -3/2, so the equation of the plane of 'best fit' is $2 - \frac{3}{2}x - \frac{3}{2}y =$ b. At (x, y) = (0, 0) this is just C = 2, the average of the b-values 0,1,3,4.

²If $(A^{\mathsf{T}}A)^{-1}$ doesn't exist, the formula above won't work and we have to define A^+ a different way.