18.06 Problem Set 3

Due Wednesday, Sept. 27, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 9/18

Look at Worked Example 3.1B from section 3.1 in your book.
For each of the vector spaces $\mathbf{V}_{\mathbf{1}}$ through $\mathbf{V}_{\mathbf{4}}$,
describe a subspace, different from the examples in the text, in two different ways: all combinations of $\ldots=$ all solutions to \ldots

Problem 2 Monday 9/18
(a) Do Problem \#19 from section 3.1 in your book.
(b) Also describe the nullspaces of each matrix.

Problem 3 Wednesday 9/20
Suppose the m-by-n matrix $A(m<n)$ has a right inverse B, that is, a matrix B such that $A B=I$, the identity.
(a) What must the dimensions of B and of I be?
(b) Try calculating B in Matlab: let $A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 0 & -1 & 2\end{array}\right]$ and find $A \backslash I$. (The identity is eye(k) in Matlab.)
(c) Now try calculating B another way, with $\operatorname{rref}\left(\left[\begin{array}{ll}A & I\end{array}\right]\right.$). (This is the reduced-row echelon form, the result of Gauss-Jordan elimination.) What do you get? Now state another, different, B with $A B=I$. (Hint: Not all the rows of B are shown, unlike the square case.)
(d) Why can't there be a left inverse $C A=I$? And what would the dimensions of C and I be if there were?

Problem 4 Wednesday 9/20
Do Problem $\# 23$ from section 3.2 in your book.

Problem 5 Wednesday 9/20
Let $v=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Describe the nullspace of the matrix $v v^{\top}$ geometrically.

Problem 6 Friday 9/22
Do Problem \#3 from section 3.3 in your book.

Problem 7 Friday 9/22
Let $A=\left[\begin{array}{ccccc}-1 & 2 & 5 & 0 & 5 \\ 2 & 1 & 0 & 0 & -15 \\ 6 & -1 & -8 & -1 & -47 \\ 0 & 2 & 4 & 3 & 16\end{array}\right] .{ }^{1}$
(a) Reduce A to (ordinary) echelon form.
(b) What are the pivots? What are the free variables?
(c) Now reduce A to row-reduced echelon form.
(d) Give the special solutions. What is the nullspace $N(A)$?
(e) What is the rank of A ?
(f) Give the complete solution to $A x=b$, where $b=A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$.

Problem 8 Friday 9/22
Do Problem \#5 from section 3.4 in your book.

Problem 9 Friday 9/22
Do Problem \#13 from section 3.4 in your book.
(Answer in back of book, but try to do it yourself first.)

Problem 10 Friday 9/22
Do Problem \#32 from section 3.4 in your book.

[^0]
[^0]: ${ }^{1}$ Modified $12 / 24$ —thanks to Laura Garrity for pointing out the original solution's error. Hopefully it's fixed now.

