18.06 Problem Set 3

Due Wednesday, Sept. 27, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 9/18

Look at Worked Example 3.1B from section 3.1 in your book.
For each of the vector spaces $\mathbf{V}_{\mathbf{1}}$ through $\mathbf{V}_{\mathbf{4}}$,
describe a subspace, different from the examples in the text, in two different ways: all combinations of $\ldots=$ all solutions to \ldots

Solution 1

Your examples will vary, but here are some possibilities:

1. All combinations of $(1,1,0,0)$ and $(1,1,1,1)=$ all solutions $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ to $v_{1}=v_{2}$ and $v_{3}=v_{4}$
2. All combinations of $(1,0,0,-1)$ (that is, all multiples $(c, 0,0,-c))=$ all solutions $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ to $v_{1}+v_{4}=0, v_{2}=0$, and $v_{3}=0$
3. All combinations of $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=$ all solutions $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ to $b=c$ and $d=2 a$
4. All combinations of x, x^{2}, and x^{3} (that is, all cubics with $\left.y(0)=0\right)=$ all solutions $y(x)$ to $d^{4} y / d x^{4}=0$ and $y(0)=0$.

Problem 2 Monday 9/18
(a) Do Problem \#19 from section 3.1 in your book.
(b) Also describe the nullspaces of each matrix.

Solution 2

(a) $C(A)=$ the x-axis (given by the equations $y=0, z=0$), in the 3 - D space \mathbb{R}^{3}.
$C(B)=$ the $x y$-plane $(z=0)$.
$C(C)=$ the line $2 x=y, z=0$.
(b) $N(A)=$ the line $2 x+y=0$, in the plane \mathbb{R}^{2}.
$N(B)=Z$, the zero vector (a point in \mathbb{R}^{2}).
$N(C)=$ the y-axis $x=0$.

Problem 3 Wednesday 9/20
Suppose the m-by-n matrix $A(m<n)$ has a right inverse B, that is, a matrix B such that $A B=I$, the identity.
(a) What must the dimensions of B and of I be?
(b) Try calculating B in Matlab: let $A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 0 & -1 & 2\end{array}\right]$ and find $A \backslash I$. (The identity is eye (k) in Matlab.)
(c) Now try calculating B another way, with $\operatorname{rref}\left(\left[\begin{array}{ll}A & I\end{array}\right]\right.$). (This is the reduced-row echelon form, the result of Gauss-Jordan elimination.) What do you get? Now state another, different, B with $A B=I$. (Hint: Not all the rows of B are shown, unlike the square case.)
(d) Why can't there be a left inverse $C A=I$? And what would the dimensions of C and I be if there were?

Solution 3

(a) B is $\mathrm{n}-\mathrm{by}-\mathrm{m}$, and I is $\mathrm{m}-\mathrm{by}-\mathrm{m}$.
(b) I get $\left[\begin{array}{cc}1 / 2 & 5 / 4 \\ 0 & 0 \\ 0 & 1 / 2\end{array}\right]$ for B.
(c) I get $\left[\begin{array}{ccccc}1 & 0 & 1 / 2 & 1 / 2 & 3 / 2 \\ 0 & 1 & -2 & 0 & -1\end{array}\right]$ for $\operatorname{rref}\left(\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right]\right)$. The last two columns suggest to me that $B=$ $\left[\begin{array}{cc}1 / 2 & 3 / 2 \\ 0 & -1 \\ 0 & 0\end{array}\right]$, and indeed $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
OK, that's cheating: I just guessed that the last row of B is zero. (Sometimes guessing is the best way to find an answer!) Here's a different route:

1. Take $A B=I$ column by column: the first column of I gives us $A x_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and the second column of I gives us $A x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (I'm writing B by columns, $B=\left[x_{1} x_{2}\right]$).
2. This is just $A x=b$, for the first column and $b_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then for the second column and $b_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. We know how to solve this: do elimination! Gauss-Jordan elimination on $\left[\begin{array}{lll}A & b_{1} & b_{2}\end{array}\right]$ is just rref ($\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right]$), and we can read off a particular solution for each column.
3. For the first column, we have $\left[\begin{array}{cccc}\hline 1 & 0 & 1 / 2 & 1 / 2 \\ 0 & \boxed{1} & -2 & 0\end{array}\right]-$
our best particular solution (set "free" variable to zero) is $x_{1}=\left[\begin{array}{c}1 / 2 \\ 0 \\ 0\end{array}\right]$.
4. For the second column, we have $\left[\begin{array}{cccc}\hline 1 & 0 & 1 / 2 & 3 / 2 \\ 0 & 1 & -2 & -1\end{array}\right]-$
our best particular solution (set "free" variable to zero) is $x_{2}=\left[\begin{array}{c}3 / 2 \\ -1 \\ 0\end{array}\right]$.
5. Put our two elimination solutions together to get $B=\left[x_{1} x_{2}\right]=\left[\begin{array}{cc}1 / 2 & 3 / 2 \\ 0 & -1 \\ 0 & 0\end{array}\right]$.
(d) If $C A=I$, then C has to be n-by-m, and I is the n-by-n identity.

Here are two reasons we can't have a left inverse (either will suffice):

1. Multiply both sides by B on the right: then we have $C A B=B$. But since we already have a right inverse $A B=I$, so this gives $C=B$. We know that can't happen, because C and B are different sizes.
2. A has rank m (or less), C has rank m (or less), so $C A$ has rank at most m also. So it can't equal I, which has full rank n.
Moral: only square matrices can have both left and right inverses. (And if both inverses exist, they're the same!)

Problem 4 Wednesday 9/20
Do Problem \#23 from section 3.2 in your book.

Solution 4

$A=\left[\begin{array}{ccc}1 & 0 & -1 / 2 \\ 1 & 3 & -2 \\ 5 & 1 & -3\end{array}\right]$ is one matrix that has $N(A)=\left\{c\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]: c \in R\right\}$ and $C(A)=\left\{a\left[\begin{array}{l}1 \\ 1 \\ 5\end{array}\right]+b\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]: a, b \in R\right\}$.

Problem 5 Wednesday 9/20

Let $v=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Describe the nullspace of the matrix $v v^{\top}$ geometrically.

Solution 5

$N\left(v v^{\boldsymbol{\top}}\right)=\left\{u: v^{\boldsymbol{\top}} u=0\right\}$, the plane $x+2 y+3 z=0$ perpendicular to v.

Problem 6 Friday 9/22
Do Problem \#3 from section 3.3 in your book.

Solution 6

The row reduced forms are:
$\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
$\operatorname{rref}\left(\left[\begin{array}{ll}A & A\end{array}\right]\right)=\left[\begin{array}{llllll}1 & 2 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{rref}\left(\left[\begin{array}{cc}A & A \\ A & 0\end{array}\right]\right)=\left[\begin{array}{llllll}1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Problem 7 Friday 9/22
Let $A=\left[\begin{array}{ccccc}-1 & 2 & 5 & 0 & 5 \\ 2 & 1 & 0 & 0 & -15 \\ 6 & -1 & -8 & -1 & -47 \\ 0 & 2 & 4 & 3 & 16\end{array}\right] .1$
(a) Reduce A to (ordinary) echelon form.
(b) What are the pivots? What are the free variables?
(c) Now reduce A to row-reduced echelon form.
(d) Give the special solutions. What is the nullspace $N(A)$?
(e) What is the rank of A ?
(f) Give the complete solution to $A x=b$, where $b=A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$.

Solution 7

(a) $U=\left[\begin{array}{ccccc}\boxed{-1} & 2 & 5 & 0 & -5 \\ 0 & 5 & 10 & 0 & -5 \\ 0 & 0 & 0 & \overline{-1} & -6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) The pivots are $-1,5$, and -1 (as marked, in columns 1, 2, and 4). The other columns are free, corresponding to the third and fifth variables (say, x_{3} and x_{5}).
(c) $R=\left[\begin{array}{ccccc}1 & 0 & -1 & 0 & -7 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

[^0](d) Set $x=\left[\begin{array}{l}* \\ * \\ 1 \\ * \\ 0\end{array}\right]$, then solve $A x=0($ or $R x=0)$ to get $x=\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right]$ for our first special solution.

Set $x=\left[\begin{array}{l}* \\ * \\ 0 \\ * \\ 1\end{array}\right]$, then solve $A x=0($ or $R x=0)$ to get $x=\left[\begin{array}{c}7 \\ 1 \\ 0 \\ -6 \\ 1\end{array}\right]$ for our second special solution.
The nullspace is the set of their linear combinations, $\left\{x_{3}\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}7 \\ 1 \\ 0 \\ -6 \\ 1\end{array}\right]\right\}$.
(e) The rank of A is $r=3$.
(f) One x that obviously works in $A x=A\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ is $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ itself, for our particular solution.

Then the complete solution is $x=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}3 \\ 1 \\ 0 \\ -6 \\ 1\end{array}\right]$.

Problem 8 Friday 9/22
Do Problem \#5 from section 3.4 in your book.

Solution 8

$$
\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
2 & 5 & -4 & b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}-b_{2}-2 b_{1}
\end{array}\right]
$$

so we need $b_{3}-b_{2}-2 b_{1}=0$ in order to have a solution to $A x=b$.
Special solutions: Setting the free variable $x_{3}=1$, we get $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ as the solution to $A x=0$.
Particular solution: Setting the free variable $x_{3}=0$, we get $\left[\begin{array}{c}5 b_{1}-2 b_{2} \\ -2 b_{1}+b_{2} \\ 0\end{array}\right]$ as a particular solution to $A x=b$.
Complete solution: Putting them together, we get the complete solution $x=\left[\begin{array}{c}5 b_{1}-2 b_{2} \\ -2 b_{1}+b_{2} \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ for any x_{3}. (Provided $b_{3}-b_{2}-2 b_{1}=0$.)

Problem 9 Friday 9/22
Do Problem \#13 from section 3.4 in your book.
(Answer in back of book, but try to do it yourself first.)

Solution 9

(a) The particular solution x_{p} is always multiplied by 1
(b) Any solution can be the particular solution
(c) $\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}6 \\ 6\end{array}\right]$. Then $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is shorter (length $\sqrt{2}$) than $\left[\begin{array}{l}2 \\ 0\end{array}\right]$
(d) The "homogeneous" solution in the nullspace is $x_{n}=0$ when A is invertible.

Problem 10 Friday 9/22
Do Problem \#32 from section 3.4 in your book.

Solution 10

$L=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right], U=\left[\begin{array}{ccc}\hline 1 & 3 & 1 \\ 0 & -\frac{1}{2} & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and the augmented matrix $\left[\begin{array}{ll}U & c\end{array}\right]=\left[\begin{array}{cccc}1 & 3 & 1 & b_{1} \\ 0 & -1 & 2 & b_{2}-b_{1} \\ 0 & 0 & 0 & b_{3}-2 b_{2} \\ 0 & 0 & 0 & b_{4}-2 b_{2}+b_{1}\end{array}\right]$.
There's only one free variable in U, namely x_{3}
Special solution: take $x_{3}=1$, find that soln. to $U x=0$. Back-substitution gives $x=\left[\begin{array}{c}-7 \\ 2 \\ 1\end{array}\right]$.
Since L is invertible, this is also the solution to $A x=(L U x=L 0=) 0$.
Particular solution: choose $x_{3}=0$, find that soln. to $U x=c$ (hence $A x=b$).
For $b=\left[\begin{array}{l}1 \\ 3 \\ 6 \\ 5\end{array}\right], c=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$ gives $x=\left[\begin{array}{c}7 \\ -2 \\ 0\end{array}\right]$. For $b=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ there is no solution, since $b_{4}-2 b_{2}+b_{1} \neq 0$.

[^0]: ${ }^{1}$ Modified $12 / 24$ - thanks to Laura Garrity for pointing out the original solution's error. Hopefully it's fixed now.

