18.06 Problem Set 3 Due Wednesday, Sept. 27, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 9/18

Look at Worked Example 3.1B from section 3.1 in your book. For each of the vector spaces V_1 through V_4 , describe a subspace, different from the examples in the text, in two different ways: all combinations of $\ldots =$ all solutions to \ldots

Solution 1

Your examples will vary, but here are some possibilities:

- 1. All combinations of (1, 1, 0, 0) and (1, 1, 1, 1) =all solutions (v_1, v_2, v_3, v_4) to $v_1 = v_2$ and $v_3 = v_4$
- 2. All combinations of (1, 0, 0, -1) (that is, all multiples (c, 0, 0, -c)) = all solutions (v_1, v_2, v_3, v_4) to $v_1 + v_4 = 0$, $v_2 = 0$, and $v_3 = 0$ 3. All combinations of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} =$
- all solutions $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to b = c and d = 2a
- 4. All combinations of x, x^2 , and x^3 (that is, all cubics with y(0) = 0) = all solutions y(x) to $d^4y/dx^4 = 0$ and y(0) = 0.

Problem 2 Monday 9/18

- (a) Do Problem #19 from section 3.1 in your book.
- (b) Also describe the nullspaces of each matrix.

Solution 2

- (a) C(A) = the x-axis (given by the equations y = 0, z = 0), in the 3-D space \mathbb{R}^3 . C(B) = the xy - plane (z = 0).
 - C(C) = the line 2x = y, z = 0.
- (b) N(A) =the line 2x + y = 0, in the plane \mathbb{R}^2 . N(B) = Z, the zero vector (a point in \mathbb{R}^2). N(C) = the y -axis x = 0.

Problem 3 Wednesday 9/20

Suppose the m-by-n matrix $A \ (m < n)$ has a right inverse B, that is, a matrix B such that AB = I, the identity.

(a) What must the dimensions of B and of I be?

(b) Try calculating B in Matlab: let $A = \begin{bmatrix} 2 & 3 & -5 \\ 0 & -1 & 2 \end{bmatrix}$ and find A\I. (The identity is eye(k) in Matlab.)

(c) Now try calculating B another way, with rref([A I]). (This is the reduced-row echelon form, the result of Gauss-Jordan elimination.) What do you get? Now state another, different, B with AB = I. (*Hint:* Not all the rows of B are shown, unlike the square case.)

(d) Why can't there be a left inverse CA = I? And what would the dimensions of C and I be if there were?

Solution 3

(a) B is n-by-m, and I is m-by-m.

(a) *D* is n-by-in, and *I* is in-by-in. (b) I get $\begin{bmatrix} 1/2 & 5/4 \\ 0 & 0 \\ 0 & 1/2 \end{bmatrix}$ for *B*. (c) I get $\begin{bmatrix} 1 & 0 & 1/2 & 1/2 & 3/2 \\ 0 & 1 & -2 & 0 & -1 \end{bmatrix}$ for rref([A I]). The last two columns suggest to me that $B = \begin{bmatrix} 1/2 & 3/2 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$, and indeed $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. OK, that's cheating: I just guessed that the last row of B is zero. (Sometimes guessing is the best way to find an answer!) Here's a different route: 1. Take AB = I column by column: the first column of I gives us $Ax_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and the second

column of I gives us $Ax_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ (I'm writing B by columns, $B = [x_1x_2]$).

2. This is just Ax = b, for the first column and $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, then for the second column and $b_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. We know how to solve this: do elimination! Gauss-Jordan elimination on $\begin{bmatrix} A & b_1 & b_2 \end{bmatrix}$ is just rref([A I]), and we can read off a particular solution for each column.

3. For the first column, we have $\begin{bmatrix} 1 & 0 & 1/2 & 1/2 \\ 0 & 1 & -2 & 0 \end{bmatrix}$ —

our best particular solution (set "free" variable to zero) is $x_1 = \begin{bmatrix} 1/2 \\ 0 \\ 0 \end{bmatrix}$.

4. For the second column, we have $\begin{bmatrix} 1 & 0 & 1/2 & 3/2 \\ 0 & 1 & -2 & -1 \end{bmatrix}$ —

our best particular solution (set "free" variable to zero) is $x_2 = \begin{bmatrix} 3/2 \\ -1 \\ 0 \end{bmatrix}$.

5. Put our two elimination solutions together to get $B = \begin{bmatrix} x_1 x_2 \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$. (d) If CA = I, then C has to be n-by-m, and I is the n-by-n identity.

Here are two reasons we can't have a left inverse (either will suffice):

1. Multiply both sides by B on the right: then we have CAB = B. But since we already have a right inverse AB = I, so this gives C = B. We know that can't happen, because C and B are different sizes.

2. A has rank m (or less), C has rank m (or less), so CA has rank at most m also. So it can't equal I, which has full rank n.

Moral: only square matrices can have both left and right inverses. (And if both inverses exist, they're the same!)

Problem 4 Wednesday 9/20

Do Problem #23 from section 3.2 in your book.

Solution 4

$$A = \begin{bmatrix} 1 & 0 & -1/2 \\ 1 & 3 & -2 \\ 5 & 1 & -3 \end{bmatrix}$$
is one matrix that has $N(A) = \left\{ c \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} : c \in R \right\}$ and $C(A) = \left\{ a \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix} + b \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} : a, b \in R \right\}$

Problem 5 Wednesday 9/20

Let $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Describe the nullspace of the matrix vv^{T} geometrically.

Solution 5

 $N(vv^{\mathsf{T}}) = \{u : v^{\mathsf{T}}u = 0\}$, the plane x + 2y + 3z = 0 perpendicular to v.

Problem 6 Friday 9/22

Do Problem #3 from section 3.3 in your book.

Solution 6

Problem 7 Friday 9/22

Let $A = \begin{bmatrix} -1 & 2 & 5 & 0 & 5 \\ 2 & 1 & 0 & 0 & -15 \\ 6 & -1 & -8 & -1 & -47 \\ 0 & 2 & 4 & 3 & 16 \end{bmatrix}$.¹

(a) Reduce A to (ordinary) echelon form.

(b) What are the pivots? What are the free variables?

(c) Now reduce A to row-reduced echelon form.

(d) Give the special solutions. What is the nullspace N(A)?

(e) What is the rank of A?

(f) Give the complete solution to Ax = b, where $b = A \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$.

Solution 7

(a)
$$U = \begin{bmatrix} -1 & 2 & 5 & 0 & -5 \\ 0 & 5 & 10 & 0 & -5 \\ 0 & 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) The pivots are -1, 5, and -1 (as marked, in columns 1, 2, and 4). The other columns are free, corresponding to the third and fifth variables (say, x_3 and x_5).

(c)
$$R = \begin{bmatrix} 1 & 0 & -1 & 0 & -7 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

¹Modified 12/24—thanks to Laura Garrity for pointing out the original solution's error. Hopefully it's fixed now.

(d) Set
$$x = \begin{bmatrix} * \\ 1 \\ * \\ 0 \end{bmatrix}$$
, then solve $Ax = 0$ (or $Rx = 0$) to get $x = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ for our first special solution.
Set $x = \begin{bmatrix} * \\ 0 \\ * \\ 1 \end{bmatrix}$, then solve $Ax = 0$ (or $Rx = 0$) to get $x = \begin{bmatrix} 7 \\ 1 \\ 0 \\ -6 \\ 1 \end{bmatrix}$ for our second special solution.

The nullspace is the set of their linear combinations, $\left\{ \begin{array}{c} x_3 \\ x_3 \\ 0 \\ 0 \\ 0 \end{array} \right| + x_5 \left| \begin{array}{c} 1 \\ 0 \\ -6 \\ 1 \\ 1 \end{array} \right| \right\}$.

- (e) The rank of A is r = 3.
- (f) One x that obviously works in $Ax = A \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ is $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ itself, for our particular solution.

Then the complete solution is
$$x = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} + x_3 \begin{bmatrix} 1\\-2\\1\\0\\0 \end{bmatrix} + x_5 \begin{bmatrix} 3\\1\\0\\-6\\1 \end{bmatrix}$$

Problem 8 Friday 9/22

Do Problem #5 from section 3.4 in your book.

Solution 8

$$\begin{bmatrix} 1 & 2 & -2 & b_1 \\ 2 & 5 & -4 & b_2 \\ 4 & 9 & -8 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - b_2 - 2b_1 \end{bmatrix}$$

so we need $b_3 - b_2 - 2b_1 = 0$ in order to have a solution to Ax = b. So we need $v_3 - v_2 - 2v_1 = 0$ in order to have a solution to Ax = b. Special solutions: Setting the free variable $x_3 = 1$, we get $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$ as the solution to Ax = 0. Particular solution: Setting the free variable $x_3 = 0$, we get $\begin{bmatrix} 5b_1 - 2b_2\\-2b_1 + b_2\\0 \end{bmatrix}$ as a particular solution to

Ax = b.

Complete solution: Putting them together, we get the complete solution $x = \begin{bmatrix} 5b_1 - 2b_2 \\ -2b_1 + b_2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ for any x_3 . (Provided $b_3 - b_2 - 2b_1 = 0$.)

Problem 9 Friday 9/22

Do Problem #13 from section 3.4 in your book. (Answer in back of book, but try to do it yourself first.)

Solution 9

(a) The particular solution x_p is always multiplied by 1

- (b) Any solution can be the particular solution
- (c) $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$. Then $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is shorter (length $\sqrt{2}$) than $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ (d) The "homogeneous" solution in the nullspace is $x_n = 0$ when A is invertible.

Problem 10 Friday 9/22

Do Problem #32 from section 3.4 in your book.

Solution 10

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ and the augmented matrix } \begin{bmatrix} U & c \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & b_1 \\ 0 & -1 & 2 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 - 2b_2 \\ 0 & 0 & 0 & b_4 - 2b_2 + b_1 \end{bmatrix}.$$

There's only one free variable in U, namely x_3

Special solution: take $x_3 = 1$, find that soln. to Ux = 0. Back-substitution gives $x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Since L is invertible, this is also the solution to Ax = (LUx = L0 =)0.

Particular solution: choose
$$x_3 = 0$$
, find that soln. to $Ux = c$ (hence $Ax = b$).

For
$$b = \begin{bmatrix} 1\\3\\6\\5 \end{bmatrix}$$
, $c = \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}$ gives $x = \begin{bmatrix} 7\\-2\\0 \end{bmatrix}$. For $b = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ there is no solution, since $b_4 - 2b_2 + b_1 \neq 0$.