18.06 Problem Set 2

Due Wednesday, Sept. 20, 2006 at 4:00 p.m. in 2-106

Problem 1 Monday 9/11
Do Problem \#7 from section 2.5 in your book.

Problem 2 Monday 9/11
Do Problem \#9 from section 2.5 in your book.

Problem 3 Monday 9/11
Do Problem \#25 from section 2.5 in your book.

Problem 4 Monday 9/11
Compute, by Gauss-Jordan elimination, a formula for the inverse of the 2-by-2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
What assumptions did you need to make?

Problem 5 Wednesday 9/13
Do Problem \#2 from section 2.6 in your book.

Problem 6 Wednesday 9/13
(a) Do Problem \#13 from section 2.6 in your book.
(b) Now compute the $L D U$-factorization $A=L D U$. Why is $U=L^{\top}$?

Problem 7 Wednesday 9/13
Do Problem \#21 from section 2.6 in your book.

Problem 8 Wednesday 9/13
Back in 18.02, you learned a different method for solving $A x=b$ called Cramer's rule, which wrote the coefficients of x as a quotient of determinants. You also learned to solve the system by finding A^{-1}.
Let's compare elimination, $\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$, and Cramer's rule using Matlab. ${ }^{1}$
(a) Try each of the three methods on a random matrix of size 100, then of size 200 and 300. (You may want to try several matrices of each size, and take an average to get a better estimate.) What do you conclude?

```
Some commands you may find useful:
>> A=rand(100); % A is a random 100-by-100 matrix
```

[^0]```
>> b=rand(100,1); % B is a random 100-by-1 column vector
>> tic; cramer(A,b); toc % Time the solution by Cramer's rule
>> tic; inv(A)*b; toc % by matrix inversion
>> tic; A\b; toc % by elimination
>> for i = 1:5
 end % do ... five times
```

(b) How much faster is elimination than Cramer or inv(A)? (You could also try larger sizes.)

Problem 9 Wednesday 9/13
Factor the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 0 & -1 \\ 6 & 2 & 1\end{array}\right]$ as $A=L U$. (Timesaving hint: Look at problem 8 from Problem Set 1.)

Problem 10 Friday 9/15
Suppose $A=L U$, where $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$ and $U=\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2\end{array}\right]$. Let $b=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$.
(a) Solve $L c=b$ by back-substitution, then solve $U r=c$ the same way for $r$.

Why does $x=r$ satisfy $A x=b$ ?
(b) Oops! I meant to write $P A=L U$, where $L, U$ are as above and $P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.

What vector solves $A x=b$ now?

Problem 11 Friday 9/15
(a) When is the product of two symmetric matrices symmetric? Explain your answer.

Problem 12 Friday 9/15
Let $P=P_{13} P_{26} P_{36} P_{14} P_{43}$, where the $P_{i j}$ are permutation matrices of order 6 .
(a) What is $P\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}\right]$ ?
(b) What is $P$ ?

Problem 13 Friday 9/15
(a) What happens if we multiply a matrix $A$ by the elimination matrix $E_{j i}$ on the right?
(b) Solve by elimination: $y^{\top}\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}1 & -4 & 3\end{array}\right]$.
(c) How could you convert this to a row-elimination problem?


[^0]:    ${ }^{1}$ If you're not using Athena, you may need the teaching code cramer.m, available from the 18.06 Web page: web.mit.edu/18.06/www

