Your PRINTED name is: SOLUTIONS

Grading

1
Please circle your recitation: 2
3
4

1) T 10 2-131 K. Meszaros 2-333 3-7826 karola
2) T 10 2-132 A. Barakat 2-172 3-4470 barakat
3) T 11 2-132 A. Barakat 2-172 3-4470 barakat
4) T 11 2-131 A. Osorno 2-229 3-1589 aosorno
5) T 12 2-132 A. Edelman 2-343 3-7770 edelman
6) T 12 2-131 K. Meszaros 2-333 3-7826 karola
7) T $\begin{array}{llllll}\text { T } & \text { 2-132 } & \text { A. Edelman } & 2-343 & 3-7770 & \text { edelman }\end{array}$
8) T $2 \quad 2-132$ J. Burns 2-333 3-7826 burns
9) T $3 \quad 2-132$ A. Osorno $\quad 2-229 \quad 3-1589$ aosorno
$1(\mathbf{4}+\mathbf{7}=\mathbf{1 1} \mathbf{~ p t s .)} \quad$ Suppose A is 3 by 4 , and $A x=0$ has exactly 2 special solutions:

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
1
\end{array}\right]
$$

(a) Remembering that A is 3 by 4, find its row reduced echelon form R.
(b) Find the dimensions of all four fundamental subspaces $C(A), N(A)$, $C\left(A^{\mathrm{T}}\right), N\left(A^{\mathrm{T}}\right)$.

You have enough information to find bases for one or more of these subspaces-find those bases.

Solution.

(a) Each special solution tells us the solution to $R x=0$ when we set one free variable $=1$ and the others $=0$. Here, the third and fourth variables must be the two free variables, and the other two are the pivots: $R=\left[\begin{array}{cccc}1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0\end{array}\right]$
Now multiply out $R x_{1}=0$ and $R x_{2}=0$ to find the $*$'s: $R=\left[\begin{array}{rrrr}1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(The *'s are just the negatives of the special solutions' pivot entries.)
(b) We know the nullspace $N(A)$ has $n-r=4-2=2$ dimensions: the special solutions x_{1}, x_{2} form a basis.

The row space $C\left(A^{\mathrm{T}}\right)$ has $r=2$ dimensions. It's orthogonal to $N(A)$, so just pick two linearly-independent vectors orthogonal to x_{1} and x_{2} to form a basis: for example, $x_{3}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 2\end{array}\right], x_{4}=\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right]$.
(Or: $C\left(A^{\mathrm{T}}\right)=C\left(R^{\mathrm{T}}\right)$ is just the row space of R, so the first two rows are a basis. Same thing!)

The column space $C(A)$ has $r=2$ dimensions (same as $C\left(A^{\mathrm{T}}\right)$). We can't write down a basis because we don't know what A is, but we can say that the first two columns of A are a basis.

The left nullspace $N\left(A^{\mathrm{T}}\right)$ has $m-r=1$ dimension; it's orthogonal to $C(A)$, so any vector orthogonal to the first two columns of A (whatever they are) will be a basis.
$2(6+\mathbf{3}+\mathbf{2}=\mathbf{1 1}$ pts.) (a) Find the inverse of a 3 by 3 upper triangular matrix U, with nonzero entries a, b, c, d, e, f. You could use cofactors and the formula for the inverse. Or possibly Gauss-Jordan elimination.
Find the inverse of $U=\left[\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right]$.
(b) Suppose the columns of U are eigenvectors of a matrix A. Show that A is also upper triangular.
(c) Explain why this U cannot be the same matrix as the first factor in the Singular Value Decomposition $A=U \Sigma V^{\mathrm{T}}$.

Solution.
(a) By elimination: (We keep track of the elimination matrix E on one side, and the product $E U$ on the other. When $E U=I$, then $E=U^{-1}$.)

$$
\begin{aligned}
{\left[\begin{array}{rrrrrr}
a & b & c & 1 & 0 & 0 \\
0 & d & e & 0 & 1 & 0 \\
0 & 0 & f & 0 & 0 & 1
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{rrrrrr}
1 & b / a & c / a & 1 / a & 0 & 0 \\
0 & 1 & e / d & 0 & 1 / d & 0 \\
0 & 0 & 1 & 0 & 0 & 1 / f
\end{array}\right] \\
& \rightsquigarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 / a & -b / a d & (b e-c d) / a d f \\
0 & 1 & 0 & 0 & 1 / d & -e / d f \\
0 & 0 & 1 & 0 & 0 & 1 / f
\end{array}\right]=\left[\begin{array}{ll}
I & U^{-1}
\end{array}\right]
\end{aligned}
$$

By cofactors: (Take the minor, then "checkerboard" the signs to get the cofactor matrix, then transpose and divide by $\operatorname{det}(U)=a d f$.)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrr}
d f & 0 & 0 \\
b f & a f & 0 \\
b e-c d & a e & a d
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrr}
d f & 0 & 0 \\
-b f & a f & 0 \\
b e-c d & -a e & a d
\end{array}\right] \rightsquigarrow\left[\begin{array}{rrr}
d f & -b f & b e-c d \\
0 & a f & -a e \\
0 & 0 & a d
\end{array}\right]} \\
& {\left[\begin{array}{rr}
1 / a & -b / a d \\
0 & 1 / d \\
0 & 0
\end{array} \quad \begin{array}{rr}
& -e / d f \\
0 & 1 / f
\end{array}\right]=U^{-1}}
\end{aligned}
$$

(b) We have a complete set of eigenvectors for A, so we can diagonalize: $A=U \Lambda U^{-1}$. We know U is upper-triangular, and so is the diagonal matrix Λ, and we've just shown that U^{-1} is upper-triangular too. So their product A is also upper-triangular.
(c) The columns aren't orthogonal! (For example, the product $u_{1}^{T} u_{2}$ of the first two columns is $a b+0 d+0 \cdot 0=a b$, which is nonzero because we're assuming all the entries are nonzero.)
$\mathbf{3}(\mathbf{3}+\mathbf{3}+\mathbf{5}=\mathbf{1 1} \mathbf{p t s}$.) (a) A and B are any matrices with the same number of rows. What can you say (and explain why it is true) about the comparison of

$$
\text { rank of } A \quad \text { rank of the block matrix }\left[\begin{array}{cc}
A & B
\end{array}\right]
$$

(b) Suppose $B=A^{2}$. How do those ranks compare? Explain your reasoning.
(c) If A is m by n of rank r, what are the dimensions of these nullspaces?

$$
\text { Nullspace of } A \quad \text { Nullspace of }\left[\begin{array}{ll}
A & A
\end{array}\right]
$$

Solution.

(a) All you can say is that $\operatorname{rank} A \leq \operatorname{rank}[A B]$. (A can have any number r of pivot columns, and these will all be pivot columns for $[A B]$; but there could be more pivot columns among the columns of B.)
(b) Now rank $A=\operatorname{rank}\left[\begin{array}{ll}A & \left.A^{2}\right] \text {. (Every column of } A^{2} \text { is a linear combination of columns }\end{array}\right.$ of A. For instance, if we call A 's first column a_{1}, then $A a_{1}$ is the first column of A^{2}. So there are no new pivot columns in the A^{2} part of $\left[A A^{2}\right]$.)
(c) The nullspace $N(A)$ has dimension $n-r$, as always. Since $[A A]$ only has r pivot columns - the n columns we added are all duplicates - $\left[\begin{array}{ll}A & A\end{array}\right]$ is an m-by- $2 n$ matrix of rank r, and its nullspace $N([A A])$ has dimension $2 n-r$.
$4(\mathbf{3}+\mathbf{4}+\mathbf{5}=\mathbf{1 2} \mathbf{p t s}$.) Suppose A is a 5 by 3 matrix and $A x$ is never zero (except when x is the zero vector).
(a) What can you say about the columns of A ?
(b) Show that $A^{\mathrm{T}} A x$ is also never zero (except when $x=0$) by explaining this key step:

If $A^{\mathrm{T}} A x=0$ then obviously $x^{\mathrm{T}} A^{\mathrm{T}} A x=0$ and then (WHY ?) $A x=0$.
(c) We now know that $A^{\mathrm{T}} A$ is invertible. Explain why $B=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ is a one-sided inverse of A (which side of A ?). B is NOT a 2 -sided inverse of A (explain why not).

Solution.

(a) $N(A)=0$ so A has full column rank $r=n=3$: the columns are linearly independent.
(b) $x^{\mathrm{T}} A^{\mathrm{T}} A x=(A x)^{\mathrm{T}} A x$ is the squared length of $A x$. The only way it can be zero is if $A x$ has zero length (meaning $A x=0$).
(c) B is a left inverse of A, since $B A=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} A=I$ is the (3-by-3) identity matrix. B is not a right inverse of A, because $A B$ is a 5 -by- 5 matrix but can only have rank 3 . (In fact, $B A=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ is the projection onto the (3-dimensional) column space of A.)
$\mathbf{5}(\mathbf{5}+\mathbf{5}=\mathbf{1 0} \mathbf{p t s}$.$) If A$ is 3 by 3 symmetric positive definite, then $A q_{i}=\lambda_{i} q_{i}$ with positive eigenvalues and orthonormal eigenvectors q_{i}.

Suppose $x=c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}$.
(a) Compute $x^{\mathrm{T}} x$ and also $x^{\mathrm{T}} A x$ in terms of the c^{\prime} s and λ 's.
(b) Looking at the ratio of $x^{\mathrm{T}} A x$ in part (a) divided by $x^{\mathrm{T}} x$ in part (a), what c 's would make that ratio as large as possible? You can assume $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. Conclusion: the ratio $x^{\mathrm{T}} A x / x^{\mathrm{T}} x$ is a maximum when x is \qquad .

Solution.

(a)

$$
\begin{aligned}
x^{\mathrm{T}} x & =\left(c_{1} q_{1}^{\mathrm{T}}+c_{2} q_{2}^{\mathrm{T}}+c_{3} q_{3}^{\mathrm{T}}\right)\left(c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}\right) \\
& =c_{1}^{2} q_{1}^{\mathrm{T}} q_{1}+c_{1} c_{2} q_{1}^{\mathrm{T}} q_{2}+\cdots+c_{3} c_{2} q_{3}^{\mathrm{T}} q_{2}+c_{3}^{2} q_{3}^{\mathrm{T}} q_{3} \\
& =c_{1}^{2}+c_{2}^{2}+c_{3}^{2} . \\
x^{\mathrm{T}} A x & =\left(c_{1} q_{1}^{\mathrm{T}}+c_{2} q_{2}^{\mathrm{T}}+c_{3} q_{3}^{\mathrm{T}}\right)\left(c_{1} A q_{1}+c_{2} A q_{2}+c_{3} A q_{3}\right) \\
& =\left(c_{1} q_{1}^{\mathrm{T}}+c_{2} q_{2}^{\mathrm{T}}+c_{3} q_{3}^{\mathrm{T}}\right)\left(c_{1} \lambda_{1} q_{1}+c_{2} \lambda_{2} q_{2}+c_{3} \lambda_{3} q_{3}\right) \\
& =c_{1}^{2} \lambda_{1} q_{1}^{\mathrm{T}} q_{1}+c_{1} c_{2} \lambda_{2} q_{1}^{\mathrm{T}} q_{2}+\cdots+c_{3} c_{2} \lambda_{2} q_{3}^{\mathrm{T}} q_{2}+c_{3}^{2} \lambda_{3} q_{3}^{\mathrm{T}} q_{3} \\
& =c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+c_{3}^{2} \lambda_{3} .
\end{aligned}
$$

(b) We maximize $\left(c_{1}^{2} \lambda_{1}+c_{2}^{2} \lambda_{2}+c_{3}^{2} \lambda_{3}\right) /\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)$ when $c_{1}=c_{2}=0$, so $x=c_{3} q_{3}$ is a multiple of the eigenvector q_{3} with the largest eigenvalue λ_{3}.
(Also notice that the maximum value of this "Rayleigh quotient" $x^{\mathrm{T}} A x / x^{\mathrm{T}} x$ is the largest eigenvalue itself. This is another way of finding eigenvectors: maximize $x^{\mathrm{T}} A x / x^{\mathrm{T}} x$ numerically.)
$6(\mathbf{4}+\mathbf{4}+\mathbf{4}=\mathbf{1 2} \mathrm{pts}$.$) \quad (a) Find a linear combination w$ of the linearly independent vectors v and u that is perpendicular to u.
(b) For the 2-column matrix $A=\left[\begin{array}{ll}u & v\end{array}\right]$, find Q (orthonormal columns) and R (2 by 2 upper triangular) so that $A=Q R$.
(c) In terms of Q only, using $A=Q R$, find the projection matrix P onto the plane spanned by u and v.

Solution.

(a) You could just write down $w=0 u+0 v=0$ - that's perpendicular to everything! But a more useful choice is to subtract off just enough u so that $w=v-c u$ is perpendicular to u. That means $0=w^{\mathrm{T}} u=v^{\mathrm{T}} u-c u^{\mathrm{T}} u$, so $c=\left(v^{\mathrm{T}} u\right) /\left(u^{\mathrm{T}} u\right)$ and

$$
w=v-\left(\frac{v^{\mathrm{T}} u}{u^{\mathrm{T}} u}\right) u
$$

(b) We already know u and w are orthogonal; just normalize them! Take $q_{1}=u /|u|$ and $q_{2}=w /|w|$. Then solve for the columns r_{1}, r_{2} of $R: Q r_{1}=u$ so $r_{1}=\left[\begin{array}{r}|u| \\ 0\end{array}\right]$, and $Q r_{2}=v$ so $r_{2}=\left[\begin{array}{c}c|u| \\ |w|\end{array}\right]$. (Where $c=\left(v^{\mathrm{T}} u\right) /\left(u^{\mathrm{T}} u\right)$ as before.)
Then $Q=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]$ and $R=\left[\begin{array}{ll}r_{1} & r_{2}\end{array}\right]$.
(c) $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=(Q R)\left(R^{\mathrm{T}} Q^{\mathrm{T}} Q R\right)^{-1}\left(R^{\mathrm{T}} Q^{\mathrm{T}}\right)=(Q R)\left(R^{\mathrm{T}} Q^{\mathrm{T}}\right)=\underline{Q Q^{\mathrm{T}}}$.
$7(\mathbf{4}+\mathbf{3}+\mathbf{4}=\mathbf{1 1}$ pts.) (a) Find the eigenvalues of

$$
C=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } C^{2}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

(b) Those are both permutation matrices. What are their inverses C^{-1} and $\left(C^{2}\right)^{-1}$?
(c) Find the determinants of C and $C+I$ and $C+2 I$.

Solution.
(a) Take the determinant of $C-\lambda I$ (I expanded by cofactors): $\lambda^{4}-1=0$. The roots of this "characteristic equation" are the eigenvalues: $+1,-1, i,-i$.

The eigenvalues of C^{2} are just $\lambda^{2}= \pm 1$ (two of each).
(Here's a "guessing" approach. Since $C^{4}=I$, all the eigenvalues λ^{4} of C^{4} are 1: so $\lambda=1,-1, i,-i$ are the only possibilities. Just check to see which ones work. Then the eigenvalues of C^{2} must be ± 1.)
(b) For any permutation matrix, $C^{-1}=C^{\mathrm{T}}$: so

$$
C^{-1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

and $\left(C^{2}\right)^{-1}=C^{2}$ is itself.
(c) The determinant of C is the product of its eigenvalues: $1(-1) i(-i)=\underline{-1}$.

Add 1 to every eigenvalue to get the eigenvalues of $C+I$ (if $C=S \Lambda S^{-1}$, then $C+I=$ $\left.S(\Lambda+I) S^{-1}\right): 2(0)(1+i)(1-i)=\underline{0}$.
(Or let $\lambda=-1$ in the characteristic equation $\operatorname{det}(C-\lambda I)$.)
Add 2 to get the eigenvalues of $C+2 I$ (or let $\lambda=-2$): $3(1)(2+i)(2-i)=\underline{15}$.
$8(\mathbf{4}+\mathbf{3}+\mathbf{4}=\mathbf{1 1}$ pts.) Suppose a rectangular matrix A has independent columns.
(a) How do you find the best least squares solution \widehat{x} to $A x=b$? By taking those steps, give me a formula (letters not numbers) for \widehat{x} and also for $p=A \widehat{x}$.
(b) The projection p is in which fundamental subspace associated with A ? The error vector $e=b-p$ is in which fundamental subspace?
(c) Find by any method the projection matrix P onto the column space of A :

$$
A=\left[\begin{array}{rr}
1 & 0 \\
3 & 0 \\
0 & -1 \\
0 & -3
\end{array}\right]
$$

Solution.
(a)

$$
\begin{aligned}
A x & =b \\
\text { Least-squares "solution": } \quad A^{\mathrm{T}} A \hat{x} & =A^{\mathrm{T}} b \\
A^{\mathrm{T}} A \text { is invertible: } \quad \hat{x} & =\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b \\
\text { and } p=A \hat{x} \text { is: } \quad A \hat{x} & =A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b
\end{aligned}
$$

(b) $p=A \hat{x}$ is a linear combination of columns of A, so it's in the column space $C(A)$. The error $e=b-p$ is orthogonal to this space, so it's in the left nullspace $N\left(A^{\mathrm{T}}\right)$.
(c) I used $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$. Since $A^{\mathrm{T}} A=\left[\begin{array}{rr}10 & 0 \\ 0 & 10\end{array}\right]$, its inverse is $\left[\begin{array}{rr}1 / 10 & 0 \\ 0 & 1 / 10\end{array}\right]=\frac{1}{10} I$, and

$$
P=\frac{1}{10}\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
3 & 9 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 3 & 9
\end{array}\right]
$$

$9(\mathbf{3}+\mathbf{4}+\mathbf{4}=\mathbf{1 1} \mathbf{p t s}$.$) This question is about the matrices with 3$'s on the main diagonal, 2 's on the diagonal above, 1 's on the diagonal below.

$$
A_{1}=[3] \quad A_{2}=\left[\begin{array}{ll}
3 & 2 \\
1 & 3
\end{array}\right] \quad A_{3}=\left[\begin{array}{lll}
3 & 2 & 0 \\
1 & 3 & 2 \\
0 & 1 & 3
\end{array}\right] \quad A_{n}=\left[\begin{array}{llll}
3 & 2 & 0 & 0 \\
1 & 3 & 2 & 0 \\
0 & 1 & 3 & \cdot \\
0 & 0 & \cdot & .
\end{array}\right]
$$

(a) What are the determinants of A_{2} and A_{3} ?
(b) The determinant of A_{n} is D_{n}. Use cofactors of row 1 and column 1 to find the numbers a and b in the recursive formula for D_{n} :

$$
\begin{equation*}
D_{n}=a D_{n-1}+b D_{n-2} . \tag{*}
\end{equation*}
$$

(c) This equation $(*)$ is the same as

$$
\left[\begin{array}{l}
D_{n} \\
D_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
D_{n-1} \\
D_{n-2}
\end{array}\right] .
$$

$>$ From the eigenvalues of that matrix, how fast do the determinants D_{n} grow? (If you didn't find a and b, say how you would answer part (c) for any a and b) For 1 point, find D_{5}.

Solution.

(a) $\operatorname{det}\left(A_{2}\right)=3 \cdot 3-1 \cdot 2=7$ and $\operatorname{det}\left(A_{3}\right)=3 \operatorname{det}\left(A_{2}\right)-2 \cdot 1 \cdot 3=15$.
(b) $D_{n}=3 D_{n-1}+(-2) D_{n-2}$. (Show your work.)
(c) The trace of that matrix A is $a=3$, and the determinant is $-b=2$. So the characteristic equation of A is $\lambda^{2}-a \lambda-b=0$, which has roots (the eigenvalues of A)

$$
\lambda_{ \pm}=\frac{a \pm \sqrt{a^{2}-4(-b)}}{2}=\frac{3 \pm 1}{2}=1 \text { or } 2 .
$$

D_{n} grows at the same rate as the largest eigenvalue of $A^{n}, \lambda_{+}^{n}=2^{n}$.
The final point: $D_{5}=3 D_{4}+2 D_{3}=3\left(3 D_{3}+2 D_{2}\right)+2 D_{3}=11 D_{3}+6 D_{2}=207$.

