# 18.06 Problem Set 5 

Due at 4 pm on Wednesday, October 19 in 2-106

Please PRINT your name and recitation information on your homework

1. Section 4.2, Problem 5
2. Section 4.2, Problem 13
3. Section 4.2, Problem 17
4. Section 4.2, Problem 19
5. Section 4.2, Problem 27
6. Section 4.3, Problem 1
7. Section 4.3, Problem 17
8. Section 4.3, Problem 22
9. Section 4.3, Problem 26
10. Section 4.3, Problem 27
11. Section 4.4, Problem 6
12. Section 4.4, Problem 7
13. The MATLAB command $a=o n e s(n, 1)$ produces an $n$ by 1 matrix of 1 's. The command $\mathrm{r}=(1: \mathrm{n})^{\prime}$ produces the vector $(1,2, \ldots, n)$, transposed to a column by '. The command $s=r . \wedge 2$ produces the vector $\left(1^{2}, 2^{2}, \ldots, n^{2}\right)$, because the dot means "a component at a time."
This problem looks for the line $y=c+d t$ closest to the parabola $y=t^{2}$ on the interval $t=0$ to $t=1$.
(a) Find the best line by calculus, not MATLAB. Choose $c$ and $d$ to minimize

$$
E(c, d):=\int_{0}^{1}\left(c+d t-t^{2}\right)^{2} d t
$$

(b) With $n=10$, choose $C$ and $D$ to give the line $y=C+D t$ that is closest to $t^{2}$ at the points $t=\frac{1}{10}, \frac{2}{10}, \ldots, 1$ (in the vector $\mathrm{r} / 10$ ). The unsolvable equations $A X=b$ (use least squares) are

$$
\left[\begin{array}{ll}
a & r / n
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=s / n^{2}
$$

Find the best $C$ and $D$ and the errors $c-C$ and $d-D$.
(c) Repeat for $n=20$. (Notice how $\mathrm{r} / \mathrm{n}$ and $\mathrm{s} / \mathrm{n}^{\wedge} 2$ end at 1 , like the calculus problem.) Are the differences $c-C$ and $d-D$ smaller for $n=20$ and by approximately what factor?

