18.06 Problem Set 3

Due at 4 pm on Wednesday, September 28 in 2-106

Please PRINT your name and recitation information on your homework

1. Section 2.7, Problem 24
2. Section 3.1, Problem 4
3. Section 3.1, Problem 19
4. Section 3.1, Problem 27
5. Section 3.2, Problem 23
6. Section 3.2, Problem 25
7. Section 3.3, Problem 3

8, Section 3.3, Problem 6
9. Section 3.3, Problem 8
10. Section 3.4, Problem 5
11. Section 3.4, Problem 32
12. Section 3.4, Problem 33
13. Section 3.4, Problem 34
14. (a) Suppose A is an m by n matrix with $m<n$. A right inverse of A is a matrix B such that $A B=I$. What are the dimensions of B and I in this case?
(b) One can find a matrix B such that $A B=I$ by using MATLAB operation $A \backslash I$. In MATLAB, type $A=\left[\begin{array}{lllll}-5 & 3 & 2 ; & 4 & -2\end{array}\right]$ to create the matrix $A=\left[\begin{array}{ccc}-5 & 3 & 2 \\ 4 & -2 & 0\end{array}\right]$ and $\mathrm{I}=$ eye(2) to define I as the 2 by 2 identity matrix. Then input the command $\mathrm{A} \backslash \mathrm{I}$. MATLAB will then solve the equation $A B=I$ for B. What output do you get?
(c) Now try to find a right inverse of A in the "usual" way by row-reducing the augmented matrix $[A I]$. You can do this in MATLAB by entering the command rref ([AI]). What is the result? Use the resulting reduced matrix to construct a matrix B satisfying $A B=I$ different from the one obtained in part (b).
(d) Explain why A has no left inverse. In other words, why isn't there a matrix C such that $C A=I$? (What would the dimensions of C and I have to be in this case?)

