18.06 Problem Set 7

SOLUTIONS

1. Section 6.1, Problem 2

Answers: Eigenvalues: $\lambda_{1,2}=-1,5$; eigenvectors: $v_{1,2}=(-2,1),(1,1)$. The matrix $A+I$ has the same eigenvectors and eigenvalues increased by 1, i.e. 0 and 6.
2. Section 6.1, Problem 12

Answers: P has $\lambda=1,0,1$ with eigenvectors $(1,2,0),(2,-1,0),(0,0,1)$. The sum of the first and the last eigenvector is $(1,2,1)$; it is also an eigenvector with $\lambda=1$. Since $P^{100}=P$, we get the same answers for P^{100}.
3. Section 6.1, Problem 22

Answers: $(A-\lambda I)$ has the same determinant as $A^{T}-\lambda I=(A-\lambda I)^{T}$. $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$: different eigenvectors.
4. Section 6.1, Problem 28

Answers: The rank of A is 1 ; eigenvalues of A are $0,0,0,4$. The rank of C is 2 ; eigenvalues of C are $0,0,2,2$.
5. Section 6.1, Problem 36

Solution: For a 3 by 3 permutation matrix P, we have $P^{6}=I$, so $(\operatorname{det} P)^{6}=$ $\operatorname{det}\left(P^{6}\right)=1$, and hence $\operatorname{det} P$ is either 1 or -1 . The pivots of P are all equal to 1 , as row reduction simply exchanges the rows to make the identity matrix I. The trace if P is either 0,1 , or 3 (it can't be 2 because once there are two 1's on the main diagonal of P, the third 1 must also be on the main diagonal). If v is an eigenvector of P with $P v=\lambda v$, then depending on whether $P^{2}=I$ or $P^{3}=I$, we have either $P^{2} v=v=\lambda^{2} v$, i.e. $\lambda^{2}=1$, or else $P^{3} v=\lambda^{3} v$, i.e. $\lambda^{3}=1$. Hence the eigenvalues of P can equal $1,-1$, or the two non-real cube roots of 1 .
6. Section 6.2, Problem 2

Answer: If $A=S \Lambda S^{-1}$, then $A^{3}=S \Lambda^{3} S^{-1}$ and $A^{-1}=S \Lambda^{-1} S^{-1}$.
7. Section 6.2, Problem 5

Answers: (a) False: don't know λ 's;
(b) True;
(c) True;
(d) False: need eigenvectors of S.
8. Section 6.2, Problem 15

Answers: (a) True;
(b) False;
(c) False (might have 2 or 3 independent eigenvectors).

Section 6.2, Problem 22
Answers: $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ and $A^{k}=$ $\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}3^{k} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$.

