18.06 Problem Set 2

SOLUTIONS TO SELECTED PROBLEMS

1. Section 2.5, Problem 25

Answer: $A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3\end{array}\right]$; the columns of B add up to 0 , so B^{-1} does not exist.
2. Section 2.5, Problem 30

Answer: not invertible for $c=7$ (equal columns), $c=2$ (equal rows), $c=0$ (zero column).
3. Section 2.5, Problem 35

Answer: $\left[\begin{array}{cc}I & 0 \\ -C & I\end{array}\right] ;\left[\begin{array}{cc}A^{-1} & 0 \\ -D^{-1} C A^{-1} & D^{-1}\end{array}\right] ;\left[\begin{array}{cc}-D & I \\ I & 0\end{array}\right]$.
4. Section 2.6, Problem 13

Answer: $\left[\begin{array}{llll}a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d\end{array}\right]=\left[\begin{array}{cccc}1 & & & \\ 1 & 1 & & \\ 1 & 1 & 1 & \\ 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{cccc}a & a & a & a \\ & b-a & b-a & b-a \\ & & c-b & c-b \\ & & & d-c\end{array}\right]$. We need $a \neq 0, b \neq a, c \neq b, d \neq c$.
5. Section 2.6, Problem 16

Answer: $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] c=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right] \longrightarrow c=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right] ;\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] x=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right] \longrightarrow$ $x=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$.
6. Section 2.6, Problem 19

Answer: $\left[\begin{array}{lll}1 & & \\ 1 & 1 & \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ & 1 & 1 \\ & & 1\end{array}\right]=L I U ;$

$$
\left.\left[\begin{array}{ccc}
a & a & 0 \\
a & a+b & b \\
0 & b & b+c
\end{array}\right]=(\text { same } L)\left[\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right] \text { (same } U\right)
$$

7. Section 2.6, Problem 28

Answer: $L U$ will be impossible for $c=6$ and $c=7$ (a row exchange needed for $c=6$).
8. Section 2.7, Problem 10

Answer: $(1,2,3,4),(2,3,1,4),(3,1,2,4),(2,4,3,1),(4,1,3,2),(3,2,4,1)$, $(4,2,1,3),(1,3,4,2),(1,4,2,3),(2,1,4,3),(3,4,1,2),(4,3,2,1)$.
9. Section 2.7, Problem 12

Solution: $(P x)^{T}(P y)=x^{T} P^{T} P y=x^{T} y$ because $P^{T} P=I$. In general $P x \cdot y=x \cdot P^{T} y \neq x \cdot P y:$

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

10. Section 2.7, Problem 16

Answer: $A^{2}-B^{2}$ and $A B A$ are symmetric if A and B are symmetric.
11. Section 2.7, Problem 19

Answer: (a) $\left(R^{T} A R\right)^{T}=R^{T} A^{T}\left(R^{T}\right)^{T}=R^{T} A R$, which is an n by n matrix.
(b) The j-th diagonal entry of $\left(R^{T} R\right)$ is equal to the dot product of the j-th row of R^{T} and the j-th column of R, i.e. the dot product of the j-th column of R with itself, which is positive.
12. Clearly, $A_{\alpha} A_{\beta}=A_{\alpha+\beta}$ since rotating a vector first by angle α and then by angle β is equivalent to rotating the vector by angle $\alpha+\beta$. The relation $A_{\alpha} A_{\beta}=A_{\alpha+\beta}$ shows that the set G of all A_{α} for $0 \leq \alpha<2 \pi$ is closed under multiplication. (Formally, we need to remark that if A_{α} and A_{β} are in G and $\alpha+\beta>2 \pi$, then $0 \leq \alpha+\beta-2 \pi<2 \pi$ and $A_{\alpha} A_{\beta}=A_{\alpha+\beta-2 \pi}$, which is in G.) The set G contains the identity matrix $I=A_{0}$, and for every A_{α} in G, its inverse, namely $A_{2 \pi-\alpha}$, is also in G (for $A_{\alpha} A_{2 \pi-\alpha}=A_{2 \pi-\alpha} A_{\alpha}=A_{2 \pi}=I$). Thus G is a group of matrices.
13. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$, where $a_{i j}=a_{j i}$ and $b_{i j}=b_{j i}$. Set $A B=\left[c_{i j}\right]$ and $B A=\left[d_{i j}\right]$. First, suppose $A B$ is symmetric. Then

$$
c_{i j}=c_{j i}=\sum_{k=1}^{n} a_{j k} b_{k i}=\sum_{k=1}^{n} b_{i k} a_{k j}=d_{i j}
$$

for all i and j, hence $A B=B A$. On the other hand, if $A B=B A$, then

$$
c_{i j}=d_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}=\sum_{k=1}^{n} a_{j k} b_{k i}=c_{j i}
$$

for all i and j, hence $A B$ is symmetric.

