18.06 Problem Set 1

SOLUTIONS

1. Section 2.1, Problem 10

Answer: $A x=(18,5,0) ; A x=(3,4,5,5)$.
2. (a) What two vectors are obtained by rotating the plane vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ by 30 degrees in the clockwise direction? Write a matrix A such that for every vector v in the plane, $A v$ is the vector obtained by rotating v clockwise by 30 degrees. (Problem 22 in Section 2.1 is helpful.)
(b) Find a matrix B such that for every 3 -dimensional vector v, the vector $B v$ is the reflection of v through the plane $x+y+z=0$. (Hint: try $v=(1,0,0)$ first.)

Solution. (a) Rotating $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ by 30 degrees in the clockwise direction yields vectors $e_{1}^{\prime}=\left[\begin{array}{c}\sqrt{3} / 2 \\ -1 / 2\end{array}\right]$ and $e_{2}^{\prime}=\left[\begin{array}{c}1 / 2 \\ \sqrt{3} / 2\end{array}\right]$. The desired matrix A has vectors e_{1}^{\prime} and e_{2}^{\prime} as columns, i.e.

$$
A=\left[\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right] .
$$

(b) The unit normal vector to the plane $x+y+z=0$ is $\hat{u}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. To obtain the reflection of a vector v through this plane one needs to subtract from v twice the projection of v onto \hat{u}. The projection is given by $(v \cdot \hat{u}) \hat{u}$, so the desired matrix B satisfies

$$
B v=v-2(v \cdot \hat{u}) \hat{u} .
$$

Substituting the three basis vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$ for v, we get

$$
\begin{aligned}
& B\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{2}{\sqrt{3}} \hat{u}=\left[\begin{array}{c}
1-\frac{2}{3} \\
-\frac{2}{3} \\
-\frac{2}{3}
\end{array}\right] ; \\
& B\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{2}{\sqrt{3}} \hat{u}=\left[\begin{array}{c}
-\frac{2}{3} \\
1-\frac{2}{3} \\
-\frac{2}{3}
\end{array}\right] ;
\end{aligned}
$$

$$
B\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\frac{2}{\sqrt{3}} \hat{u}=\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{2}{3} \\
1-\frac{2}{3}
\end{array}\right]
$$

Hence the answer is

$$
B=\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & -2 / 3 \\
-2 / 3 & 1 / 3 & -2 / 3 \\
-2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

3. Section 2.2, Problem 21

Answer: Pivots: 2, 3/2, 4/3, 5/4. Solution: $t=4, z=-3, y=2, x=-1$.
4. Section 2.2, Problem 7

Answer: Elimination fails for $a=2$ (no solution). A row exchange is necessary for $a=0$. After the exchange, the solution is $x=3, y=-1$.
5. Section 2.2, Problem 27

Answer: $s=10$.
6. Section 2.3, Problem 17

Answer: The equations are

$$
\begin{gathered}
a+b+c=4 \\
a+2 b+4 c=8 \\
a+3 b+9 c=14
\end{gathered}
$$

The solution to this system is $(a, b, c)=(2,1,1)$.
7. Section 2.3, Problem 18

Answer:
$E F=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right], F E=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 0 \\ b+a c & c & 1\end{array}\right], E^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 a & 1 & 0 \\ 2 b & 0 & 1\end{array}\right], F^{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 c & 1\end{array}\right]$.
8. Section 2.3, Problem 25

Answer: The first two rows of A add up to the bottom row, so in order for $A x=b$ to have a solution, b must have the same property. Thus the last entry of b must be changed from 6 to 3 .
9. Section 2.4, Problem 14

Answer: (a) True.
(b) False. If A is m by n, then B must be n by m, but m and n can be distinct.
(c) True.
(d) False. For example, if B is the matrix of all zeros, then A can be any matrix with appropriate dimensions.
10. Section 2.4, Problem 22

Answer: $A=A^{2}=A^{3}=\ldots ; A B=\left[\begin{array}{cc}.5 & -.5 \\ .5 & -.5\end{array}\right] ;(A B)^{2}=(A B)^{3}=\ldots=$ 0.
11. Section 2.4, Problem 22

Answer: (a) E.g. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
(b) E.g. $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
12. Section 2.5, Problem 32

Answer: $A^{-1}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$.
13. Do there exist 2 by 2 matrices A and B with real entries such that $A B-B A=I$, where I is the identity matrix?

Solution. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$. Then

$$
A B-B A=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]-\left[\begin{array}{ll}
e a+f c & e b+f d \\
g a+h c & g b+h d
\end{array}\right]=
$$

$$
=\left[\begin{array}{cc}
b g-f c & a f+b h-e b-f d \\
c e+d g-g a-h c & c f-g b
\end{array}\right] .
$$

Note that the sum of the diagonal entries of $A B-B A$ is 0 , and the sum of the diagonal entries of I is 2 , hence $A B-B A \neq I$ for any 2 by 2 matrices A and B.

Comment. The sum of the diagonal entries of a square matrix A is called the trace of A, denoted $\operatorname{tr}(A)$. For any two n by n matrices A and B, the equation $\operatorname{tr}(A B-B A)=0$ holds; this can be checked in the same straightforward way as done above for $n=2$. Since $\operatorname{tr}(I)=n$, we cannot have $A B-B A=I$ for any n by n matrices A and B.

