

1 (12 pts.) This question is about the matrix A = I + E where E is the all-ones matrix ones(4, 4):

- (a) By elimination find the pivots of A.
- (b) Factor A into LDL^{T} (if that is possible).
- (c) The inverse matrix has the form $A^{-1} = I + cE$. Figure out E^2 and then choose the number c so that $AA^{-1} = I$.

- 2 (12 pts.) Keep the same matrix A as in Problem 1.
 - (a) Find the matrix P that projects any vector in \mathbb{R}^4 onto the subspace spanned by the first column of A.
 - (b) Describe the nullspace of I P and the nullspace of PA.
 - (c) Find all the eigenvalues of P.

3 (12 pts.) Now suppose A = I + bE, with the same E = ones(4, 4).

- (a) What are the eigenvalues of E?
- (b) If b = 2, what is the determinant of A?
- (c) Suppose you know that $x^{T}Ax > 0$ for every nonzero vector x. (Same matrix A.) What are the possible values of b?

- 4 (16 pts.) Suppose A is an 8 by 8 invertible matrix. Throw away any 3 columns of A to get an 8 by 5 matrix B.
 - (a) You will correctly think that B has rank 5. Give a mathematical reason why this is true.
 - (b) Tell all you know about the nullspace of B^{T} and the reduced row echelon form $\operatorname{rref}(B)$.
 - (c) Give as much information as possible about the eigenvalues and eigenvectors of $B^{T}B$ and BB^{T} (those are separate questions).

- 5 (12 pts.) Suppose Q is an m by n matrix with $Q^{T}Q = I$. Write down the most important facts about
 - (a) The columns of ${\cal Q}$
 - (b) m and n and the rank of Q
 - (c) The least squares solution \widehat{x} to Qx=b

6 (12 pts.) (a) The eigenvalues of
$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 are _____.

- (b) An orthogonal set of 4 eigenvectors is _____.
- (c) CIRCLE every class of matrices to which this matrix ${\cal A}$ belongs:

diagonalizable	permutation	nonsingular
Jordan matrix	orthogonal	projection
skew-symmetric		

7 (12 pts.) Suppose A is 2 by 3 with this Singular Value Decomposition $U\Sigma V^{\mathrm{T}}$. U and V are orthogonal matrices:

$$A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} & v_1^{\mathrm{T}} \\ & v_2^{\mathrm{T}} \\ & v_3^{\mathrm{T}} \end{bmatrix}.$$

- (a) Find a basis for the nullspace of A.
- (b) Find all solutions to the equation $Ax = u_1$.
- (c) Find the shortest solution to $Ax = u_1$ (minimum length vector) and prove that it is shortest.

- 8 (12 pts.) Suppose A (3 by 3) has eigenvalues $\lambda_1, \lambda_2, \lambda_3$ and independent eigenvectors x_1, x_2, x_3 .
 - (a) What is the general form of the solutions to $u_{k+1} = Au_k$ and $\frac{du}{dt} = Au$? (Two questions)
 - (b) Suppose every solution to $u_{k+1} = Au_k$ approaches a multiple $c x_1$ as $k \to \infty$ (*c* depends on u_0). What does this tell you about $\lambda_1, \lambda_2, \lambda_3$?
 - (c) For some 3 by 3 matrices, the complete solution to $\frac{du}{dt} = Au$ does not have the form you gave in part (a). What can go wrong? Give an example of such a matrix A.