| | | | Grading | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | $\mathbf{1}$ |

1 (12 pts.) This question is about the matrix $A=I+E$ where E is the all-ones matrix ones $(4,4)$:

$$
A=\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]=I+\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

(a) By elimination find the pivots of A.
(b) Factor A into $L D L^{\mathrm{T}}$ (if that is possible).
(c) The inverse matrix has the form $A^{-1}=I+c E$. Figure out E^{2} and then choose the number c so that $A A^{-1}=I$.

2 (12 pts.) Keep the same matrix A as in Problem 1.
(a) Find the matrix P that projects any vector in \mathbf{R}^{4} onto the subspace spanned by the first column of A.
(b) Describe the nullspace of $I-P$ and the nullspace of $P A$.
(c) Find all the eigenvalues of P.

3 (12 pts.) Now suppose $A=I+b E$, with the same $E=$ ones $(4,4)$.
(a) What are the eigenvalues of E ?
(b) If $b=2$, what is the determinant of A ?
(c) Suppose you know that $x^{\mathrm{T}} A x>0$ for every nonzero vector x. (Same matrix A.) What are the possible values of b ?

4 ($\mathbf{1 6}$ pts.) Suppose A is an 8 by 8 invertible matrix. Throw away any 3 columns of A to get an 8 by 5 matrix B.
(a) You will correctly think that B has rank 5. Give a mathematical reason why this is true.
(b) Tell all you know about the nullspace of B^{T} and the reduced row echelon form $\operatorname{rref}(B)$.
(c) Give as much information as possible about the eigenvalues and eigenvectors of $B^{\mathrm{T}} B$ and $B B^{\mathrm{T}}$ (those are separate questions).

5 (12 pts.) Suppose Q is an m by n matrix with $Q^{\mathrm{T}} Q=I$. Write down the most important facts about
(a) The columns of Q
(b) m and n and the rank of Q
(c) The least squares solution \widehat{x} to $Q x=b$

6 ($\mathbf{1 2} \mathbf{~ p t s .) ~ (a) ~ T h e ~ e i g e n v a l u e s ~ o f ~} A=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ are $工$.
(b) An orthogonal set of 4 eigenvectors is \qquad .
(c) CIRCLE every class of matrices to which this matrix A belongs:

diagonalizable	permutation	nonsingular
Jordan matrix	orthogonal	projection

7 (12 pts.) Suppose A is 2 by 3 with this Singular Value Decomposition $U \Sigma V^{\mathrm{T}} . U$ and V are orthogonal matrices:

$$
A=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\mathrm{T}} \\
v_{2}^{\mathrm{T}} \\
v_{3}^{\mathrm{T}}
\end{array}\right]
$$

(a) Find a basis for the nullspace of A.
(b) Find all solutions to the equation $A x=u_{1}$.
(c) Find the shortest solution to $A x=u_{1}$ (minimum length vector) and prove that it is shortest.

8 (12 pts.) Suppose A (3 by 3) has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and independent eigenvectors x_{1}, x_{2}, x_{3}.
(a) What is the general form of the solutions to $u_{k+1}=A u_{k}$ and $\frac{d u}{d t}=A u$? (Two questions)
(b) Suppose every solution to $u_{k+1}=A u_{k}$ approaches a multiple $c x_{1}$ as $k \rightarrow \infty\left(c\right.$ depends on $\left.u_{0}\right)$. What does this tell you about $\lambda_{1}, \lambda_{2}, \lambda_{3} ?$
(c) For some 3 by 3 matrices, the complete solution to $\frac{d u}{d t}=A u$ does not have the form you gave in part (a). What can go wrong? Give an example of such a matrix A.

