1.(a) $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$
(b) $A=\left(\begin{array}{cccc}1 & & & \\ \frac{1}{2} & 1 & & \\ \frac{1}{2} & \frac{1}{3} & 1 & \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 1\end{array}\right)\left(\begin{array}{llll}2 & & & \\ & \frac{3}{2} & & \\ & & \frac{4}{3} & \\ & & & \frac{5}{4}\end{array}\right)\left(\begin{array}{cccc}1 & & & \\ \frac{1}{2} & 1 & & \\ \frac{1}{2} & \frac{1}{3} & 1 & \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 1\end{array}\right)^{T}$
(c) $c=-1 / 5$.since $E^{2}=4 E$ and $A A^{-1}=(I+E)(I+c E)=I+(c+1+4 c) E$ so $5 c+1=0$.
2.(a) $P=\frac{a a^{T}}{a^{T} a}=\frac{1}{7}\left(\begin{array}{llll}4 & 2 & 2 & 2 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1\end{array}\right)$, Trick: computation easiest using $a=(2,1,1,1)^{T}$.
(b) The nullspace of $I-P$ consists of all multiples of a. (One view is that $x=P x$. Another view is that it is the orthogonal complement of the nullspace of P which are all vectors orthogonal to a.)
(c) The matrix has rank 1 and is a projector, so one eigenvalue is 1 and the rest are 0 .
3.(a) E is rank one symmetric with trace 4 , so the eigenvalues are $0,0,0,4$.
(b) The eigenvalues of A are $1,1,1$, and $1+2 \cdot 4=9$ so the determinant is 9 .
(c) We need $1+4 b>0$ so $b>-1 / 4$.
4.(a) The columns of B are independent since the columns of A are. Therefore the span of B is five dimensional. (B has no free columns.)
(b) The nullspace of B^{T} is a three dimensional subspace of R^{8}.It is the orthogonal complement of the column space of B in R^{8}. The rref of B looks like the first five columns of I_{8}.
(c) $B^{T} B$ is a 5×5 matrix with positive eigenvalues that are the squares of the singular values of $B . B B^{T}$ has the same five positive eigenvalues and three more 0 eigenvalues as well.
5.(a) The columns of Q are n orthonormal vectors in R^{m}.
(b) $n \leq m$ and the rank of Q is n.
(c) $\hat{x}=Q^{T} b$.
6.(a) $1, i,-1,-i$
(b) The four columns of the DFT matrix $F_{4}=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & 1 & -i\end{array}\right)$
(c) diagonalizable-yes, permutation-yes, nonsingular-yes, Jordan-no, orthogonalyes, projection-no, skew-symmetric-no
7.(a) The nullspace of A has basis v_{2} and v_{3}.
(b) $x=v_{1} / 4+c_{1} v_{2}+c_{2} v_{3}$
(c) Shortest is $v_{1} / 4$. It is the projection of x above onto the span of v_{1}.
8.(a) $u_{k}=c_{1} \lambda_{1}^{k} x_{1}+c_{2} \lambda_{2}^{k} x_{2}+c_{3} \lambda_{3}^{k} x_{3}$ and $u(t)=c_{1} e^{\lambda_{1} t} x_{1}+c_{2} e^{\lambda_{2} t} x_{2}+c_{3} e^{\lambda_{3} t} x_{3}$
(b) $\lambda_{1}=1$ and $\left|\lambda_{i}\right|<1$, for $i=2,3$.
(c) The matrix may not have a complete set of independent eigenveectors.

An example is a three by three Jordan block: $\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.

