Your name is:

Please circle your recitation:

- 1. M2 A. Brooke-Taylor
- 2. M2 F. Liu
- 3. M3 A. Brooke-Taylor
- 4. T10 K. Cheung
- 5. T10 Y. Rubinstein
- 6. T11 K. Cheung

- 7. T11 V. Angeltveit
- 8. T12 V. Angeltveit
- 9. T12 F. Rochon
- 10. T1 L. Williams
- 11. T1 K. Cheung
- 12. T2 T. Gerhardt

Grading:

Question	Points	Maximum
Name + rec		5
1		15
2		55
3		25
Total:		100

Remarks:

Do all your work on these pages.

No calculators or notes.

Putting your name and recitation section correctly is worth 5 points. The exam is worth a total of 100 points. 1. Let

$$A = \left[\begin{array}{rrrr} 2 & 2 & 2 \\ 4 & 3 & 1 \\ -2 & -1 & 4 \end{array} \right].$$

(a) Compute an LDU factorization of A if one exists.

(b) Give all solutions to
$$Ax = b$$
 where $b = \begin{bmatrix} 2 \\ -3 \\ 11 \end{bmatrix}$.

2. One of the entries of A has been modified as there was a mistake. (Many of the subquestions are independent and can be answered in any order.) By performing row eliminations (and possibly permutations) on the following 4×8 matrix A

[1]	2	0	3	-1	1	1	-2
-3	-6	2	-7	7	0	-6	3
1	2	2	5	3	3	-1	0
$\lfloor 2$	4	0	6	-2	1	3	0

we got the following matrix B:

Γ1	2	0	3	-1	0	2	0	-
0	0	1	1	2	0	0	0	
0	0	0	0	0	1	-1	0	
0	0	0	0	0	0	0	1	_

(a) What is the rank of A?

(b) What are the dimensions of the 4 fundamental subspaces?

(c) How many solutions does Ax = b have? Does it depend on b? Justify

(d) Are the rows of A linearly independent? Why?

(e) Do columns 4, 5, 6 and 7 of A form a basis of \mathbb{R}^4 ? Why?

(f) Give a basis of N(A).

(g) Give a basis of $N(A^T)$.

(h) (You do not need to do any calculations to answer this question.) What is the reduced row echelon form for A^T ? Explain.

(i) (Again calculations are not necessary for this part.) Let B = EA. Is E invertible? If so, what is the inverse of E?

- 3. For each of these statements, say whether the claim is true or false and give a brief justification.
 - (a) **True/False:** The set of 3×3 non-invertible matrices forms a subspace of the set of all 3×3 matrices.

(b) **True/False:** If the system Ax = b has no solution then A does not have full row rank.

(c) **True/False:** There exist $n \times n$ matrices A and B such that B is not invertible but AB is invertible.

(d) **True/False:** For any permutation matrix P, we have that $P^2 = I$.