18.06 Fall 2004 Quiz 1 October 13, 2004

Your name is:

Please circle your recitation:

1. M2 A. Brooke-Taylor	7. T11 V. Angeltveit
2. M2 F. Liu	8. T12 V. Angeltveit
3. M3 A. Brooke-Taylor	9. T12 F. Rochon
4. T10 K. Cheung	10. T1 L. Williams
5. T10 Y. Rubinstein	11. T1 K. Cheung
6. T11 K. Cheung	12. T2 T. Gerhardt

Grading:

Question	Points	Maximum
Name + rec		5
1		15
2		55
3		25
Total:		100

Remarks:

Do all your work on these pages.
No calculators or notes.
Putting your name and recitation section correctly is worth 5 points. The exam is worth a total of 100 points.

1. Let

$$
A=\left[\begin{array}{ccc}
2 & 2 & 2 \\
4 & 3 & 1 \\
-2 & -1 & 4
\end{array}\right]
$$

(a) Compute an $L D U$ factorization of A if one exists.
(b) Give all solutions to $A x=b$ where $b=\left[\begin{array}{c}2 \\ -3 \\ 11\end{array}\right]$.
2. One of the entries of A has been modified as there was a mistake. (Many of the subquestions are independent and can be answered in any order.) By performing row eliminations (and possibly permutations) on the following 4×8 matrix A

$$
\left[\begin{array}{llllllll}
1 & 2 & 0 & 3 & -1 & 1 & 1 & -2 \\
-3 & -6 & 2 & -7 & 7 & 0 & -6 & 3 \\
1 & 2 & 2 & 5 & 3 & 3 & -1 & 0 \\
2 & 4 & 0 & 6 & -2 & 1 & 3 & 0
\end{array}\right]
$$

we got the following matrix B :

$$
\left[\begin{array}{llllllll}
1 & 2 & 0 & 3 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) What is the rank of A ?
(b) What are the dimensions of the 4 fundamental subspaces?
(c) How many solutions does $A x=b$ have? Does it depend on b ? Justify
(d) Are the rows of A linearly independent? Why?
(e) Do columns 4, 5, 6 and 7 of A form a basis of R^{4} ? Why?
(f) Give a basis of $N(A)$.
(g) Give a basis of $N\left(A^{T}\right)$.
(h) (You do not need to do any calculations to answer this question.) What is the reduced row echelon form for A^{T} ? Explain.
(i) (Again calculations are not necessary for this part.) Let $B=E A$. Is E invertible? If so, what is the inverse of E ?
3. For each of these statements, say whether the claim is true or false and give a brief justification.
(a) True/False: The set of 3×3 non-invertible matrices forms a subspace of the set of all 3×3 matrices.
(b) True/False: If the system $A x=b$ has no solution then A does not have full row rank.
(c) True/False: There exist $n \times n$ matrices A and B such that B is not invertible but $A B$ is invertible.
(d) True/False: For any permutation matrix P, we have that $P^{2}=I$.

