18.06 Fall 2004 Quiz 1 October 13, 2004

Your name is:

Please circle your recitation:

1. M2 A. Brooke-Taylor	7. T11 V. Angeltveit
2. M2 F. Liu	8. T12 V. Angeltveit
3. M3 A. Brooke-Taylor	9. T12 F. Rochon
4. T10 K. Cheung	10. T1 L. Williams
5. T10 Y. Rubinstein	11. T1 K. Cheung
6. T11 K. Cheung	12. T2 T. Gerhardt

Grading:

Question	Points	Maximum
Name + rec		5
1		15
2		55
3		25
Total:		100

Remarks:

Do all your work on these pages.
No calculators or notes.
Putting your name and recitation section correctly is worth 5 points. The exam is worth a total of 100 points.

1. Let

$$
A=\left[\begin{array}{ccc}
2 & 2 & 2 \\
4 & 3 & 1 \\
-2 & -1 & 4
\end{array}\right]
$$

(a) Compute an $L D U$ factorization of A if one exists.

Solution:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
E_{31} \\
E_{21} \\
{\left[\begin{array}{ccc}
2 & 2 & 2 \\
4 & 3 & 1 \\
-2 & -1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & -1 & -3 \\
0 & 1 & 6
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]} \\
E_{32}
\end{gathered}\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & -1 & -3 \\
0 & 1 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & -1 & -3 \\
0 & 0 & 3
\end{array}\right], ~\left[\begin{array}{c}
{\left[\begin{array}{c}
\end{array}\right]}
\end{array}\right.
$$

So for $A=L U$ decomposition, we have from this that

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & -1 & -3 \\
0 & 0 & 3
\end{array}\right]
$$

But this is not the U we want for $A=L D U$ decomposition; for that, we factor out the pivot values of the old U and put them in D. In this way we get

$$
\left[\begin{array}{ccc}
2 & 2 & 2 \\
4 & 3 & 1 \\
-2 & -1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Give all solutions to $A x=b$ where $b=\left[\begin{array}{c}2 \\ -3 \\ 11\end{array}\right]$.

Solution:The quick way to do this is by forward and backward substitution, using the result of the previous part. We want $A x=b$, that is, $L D U x=b$. Setting $D U x=c$, we have to first solve $L c=b$ for c, and then $D U x=c$ for x.
Now, $L c=b$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
11
\end{array}\right]
$$

so clearly we must have $c_{1}=2$, so $c_{2}=-7$, and so $c_{3}=6$. With that, $D U x=c$ becomes

$$
\left[\begin{array}{ccc}
2 & 2 & 2 \\
0 & -1 & -3 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-7 \\
6
\end{array}\right],
$$

and hence we get that $x_{3}=2$, so $x_{2}=1$, so finally $x_{1}=-2$. Hence, the one and only solution to $A x=b$ is $x=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$.
2. One of the entries of A was modified as there was a mistake. (Many of the subquestions are independent and can be answered in any order.) By performing row eliminations (and possibly permutations) on the following 4×8 matrix A

$$
\left[\begin{array}{llllllll}
1 & 2 & 0 & 3 & -1 & 1 & 1 & -2 \\
-3 & -6 & 2 & -7 & 7 & 0 & -6 & 3 \\
1 & 2 & 2 & 5 & 3 & 3 & -1 & 0 \\
2 & 4 & 0 & 6 & -2 & 1 & 3 & 0
\end{array}\right]
$$

we got the following matrix B :

$$
\left[\begin{array}{cccccccc}
1 & 2 & 0 & 3 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) What is the rank of A ?

Solution:

4. There are 4 pivots in the reduced row echelon form of A.
(b) What are the dimensions of the 4 fundamental subspaces?

Solution:

$$
\begin{gathered}
\operatorname{dim}(C(A))=\operatorname{dim}(R(A))=\operatorname{rank}(A)=4 \\
\operatorname{dim}(N(A))=n-\operatorname{rank}(A)=8-4=4 \\
\operatorname{dim}\left(N\left(A^{T}\right)\right)=m-\operatorname{rank}(A)=4-4=0
\end{gathered}
$$

(c) How many solutions does $A x=b$ have? Does it depend on b ? Justify

Solution:

$A x=b$ will have infinitely many solutions for any b. There is no row of 0 's in the reduced row echelon form to cause there to be no solutions for the "wrong" b. There are infinitely many solutions since the nullspace, being 4 -dimensional, has infinitely many elements.
(d) Are the rows of A linearly independent? Why?

Solution:

Yes. The reduced row echelon form of A has linearly independent rows, and row operations preserve the row space.
(e) Do columns 4, 5, 6 and 7 of A form a basis of R^{4} ? Why?

Solution:

No. Columns 4, 5, 6 and 7 in B are dependent, and row operations preserve linear dependence and independence of columns. Hence, columns 4, 5, 6 and 7 of A are dependent.
(f) Give a basis of $N(A)$.

Solution:We get it as usual from the reduced row echelon form, B.

$$
\left[\begin{array}{llllllll}
1 & 2 & 0 & 3 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

gives the four equations

$$
\begin{aligned}
& x_{1}=-2 x_{2}-3 x_{4}+x_{5}-2 x_{7} \\
& x_{3}=-x_{4}-2 x_{5} \\
& x_{6}=x_{7} \\
& x_{8}=0
\end{aligned}
$$

From these we get the 4 special solutions corresponding to the 4 free variables x_{2}, x_{4}, x_{5} and x_{7}. The special solutions are a basis for the nullspace. Hence, our basis is

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

(g) Give a basis of $N\left(A^{T}\right)$.

Solution:

We saw that $\operatorname{dim}\left(N\left(A^{T}\right)\right)=0$. Hence, a basis for $N\left(A^{T}\right)$ must contain no vectors, that is, it must be the empty set $\}$, often denoted by \emptyset.
(h) (You do not need to do any calculations to answer this question.) What is the reduced row echelon form for A^{T} ? Explain.

Solution:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

A^{T} is a 8×4 matrix with 4 independent columns (since A has 4 independent rows). Thus, every column in the reduced row echelon form must contain a pivot. Hence, the given matrix is the only possible reduced row echelon form of A^{T}.
(i) (Again calculations are not necessary for this part.) Let $B=E A$. Is E invertible? If so, what is the inverse of E ?

Solution:

Yes; E is just the product of the elimination matrices (including possibly permutation matrices) which are applied to A to get B. Consider columns $1,3,6$ and 8 of A - those which become the pivot columns of B. The matrix E is what performs this change on the columns. Hence,

$$
E\left[\begin{array}{cccc}
1 & 0 & 1 & -2 \\
-3 & 2 & 0 & 3 \\
1 & 2 & 3 & 0 \\
2 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which of course means that this matrix is E^{-1}.
3. For each of these statements, say whether the claim is true or false and give a brief justification.
(a) True/False: The set of 3×3 non-invertible matrices forms a subspace of the set of all 3×3 matrices.

Solution:

False. Consider for example

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The matrix on the right hand side is invertible, but the two on the left hand side are not.
(b) True/False: If the system $A x=b$ has no solution then A does not have full row rank.

Solution:

True. For $A x=b$ to have no solution we must have a row of 0 's in the reduced row echelon form. Hence, the number of pivots will be less than the number of rows, and so the matrix A does not have full rank.
(c) True/False: There exist $n \times n$ matrices A and B such that B is not invertible but $A B$ is invertible.

Solution:

False. Suppose $A B$ is invertible, and consider $C=(A B)^{-1} A$. Then

$$
C B=(A B)^{-1} A B=I,
$$

so C is an inverse for B.
(d) True/False: For any permutation matrix P, we have that $P^{2}=I$.

Solution:

False. Consider the permutation matrix

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then

$$
P^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \neq I .
$$

