
18.06, Fall 2004, Problem Set 7 Solutions

1. (11 pts.)

(a) Let F be the subspace of all 2 × 2 matrices of the form:

[

a b

c d

]

,

with a + b + c + d = 0. It is clear that a1,a2,a3 and b1,b2,b3 are in F .

We claim that any element in F can be expressed as a linear combination of a1,a2,a3:

[

a b

c d

]

= −ba1 − ca2 − da3 = −b

[

1 −1
0 0

]

− c

[

1 0
−1 0

]

− d

[

1 0
0 −1

]

,

since a = −b − c − d. So a1,a2,a3 span F .

Similarly, any element in F can be expressed as a linear combination of b1,b2,b3. In
other words, we would like to find x1, x2, x3 such that

[

a b

c d

]

= x1b1 + x2b2 + x3b3 = x1

[

2 −1
−1 0

]

+ x2

[

0 2
−1 −1

]

+ x3

[

−1 0
2 −1

]

=

[

2x1 − x3 −x1 + 2x2

−x1 − x2 + 2x3 −x2 − x3

]

.

So we would like to be able to solve the system of equations:



















2x1 −x3 = a

−x1 +2x2 = b

−x1 −x2 +2x3 = c

−x2 −x3 = d

for every a, b, c, d with a + b + c + d = 0. The last equation is implied by the first 3 (it is
minus the sum of the first 3) as a + b + c + d = 0, thus we just have to solve the system
of equations:











2x1 −x3 = a

−x1 +2x2 = b

−x1 −x2 +2x3 = c

This system always has a (unique) solution since the underlying matrix







2 0 −1
−1 2 0
−1 −1 2







is nonsingular (e.g. its determinant is 5, or its columns are linearly independent, ...).
This means that b1, b2, b3 also generate F .
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(b) It is simpler to first compute the matrix M = L−1 which allows to go from a represen-
tation b1, b2, b3 in the basis to a representation in the basis a1, a2, a3. Indeed, the
basis vectors b1, b2, b3 can be expressed in the basis a1, a2, a3 as

b1 =

[

2 −1
−1 0

]

= a1 + a2,

b2 =

[

0 2
−1 −1

]

= −2a1 + a2 + a3,

b3 =

[

−1 0
2 −1

]

= −2a2 + a3.

As the ith column of M corresponds to the coeffcients in the above expression of bi we
get:

M = L−1 =







1 −2 0
1 1 −2
0 1 1






.

Now L is the inverse of this matrix which is (this can be obtained by Gauss-Jordan for
example):

L =
1

5







3 2 4
−1 1 2
1 −1 3






.

(c) For

v =

[

3 −2
−4 3

]

,

we get that c1 = 2, c2 = 4 and c3 = −3. Computing

d = Lc =
1

5







3 2 4
−1 1 2
1 −1 3













2
4
−3






=







0.4
−0.8
−2.2






,

we verify that indeed
[

3 −2
−4 3

]

= 0.4

[

2 −1
−1 0

]

− 0.8

[

0 2
−1 −1

]

− 2.2

[

−1 0
2 −1

]

2. (11 pts.)

(a) For a permutation matrix P , the determinant can be either 1 (for any even permutation,
such as the identity I), or −1 (for any odd permutation, such as an elementary permu-
tation matrix). No other values are possible as any permutation matrix can be obtained
from the identity by switching rows.

(b) For an orthogonal matrix Q, the determinant can be either 1 (e.g. for the identity) or
-1 (e.g. for the identity after multiplying a row by -1). No other values are possible as
1 = det(I) = det(Q) det(QT ) = det(Q)2.
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(c) For a projection matrix P , the determinant can either be 1 (the only possibility here is
the identity matrix corresponding to projecting on the entire space) or 0 (for any other
projection matrix such as the 0 matrix corresponding to projecting over the subspace
{0}). No other values are possible since P 2 = P implies that det(P )2 = det(P ) or
det(P )(1 − det(P )) = 0, implying that det(P ) ∈ {0, 1}.

(d) Computing explicitly the determinant of a 2×2 rotation matrix, we get cos2(θ)+sin2(θ) =
1. So 1 is the only value.

3. (7 pts.) We are going to use the facts that (i) when performing row eliminations or column
eliminations, the determinant is unaffected and (ii) scaling a row or a column by t multiplies
the determinant by t. Subtracting column 1 from columns 2, 3, 4, we get:

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
a b − a c − a d − a

a2 b2 − a2 c2 − a2 d2 − a2

a3 b3 − a3 c3 − a3 d3 − a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, factorizing (b − a) from column 2, (c − a) from column 3 and (d − a) from column 4,
we get:
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (b − a)(c − a)(d − a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
a 1 1 1
a2 b + a c + a d + a

a3 b2 + ba + a2 c2 + ca + a2 d2 + da + a2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Substracting columns 2 from columns 3 and 4, we get:
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (b − a)(c − a)(d − a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
a 1 0 0
a2 b + a c − b d − b

a3 b2 + ba + a2 c2 − b2 + ca − ba d2 − b2 + da − ba

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Factorizing (c − b) from column 3 and (d − b) from column 4, we get:
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (b−a)(c−a)(d−a)(c−b)(d−b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
a 1 0 0
a2 b + a 1 1
a3 b2 + ba + a2 a + b + c a + b + d

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Substracting column 3 from column 4, we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (b − a)(c − a)(d − a)(c − b)(d − b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
a 1 0 0
a2 b + a 1 0
a3 b2 + ba + a2 a + b + c d − c

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (b − a)(c − a)(d − a)(c − b)(d − b)(d − c)

= (a − b)(a − c)(a − d)(b − c)(b − d)(c − d).
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4. (6 pts.) The determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
x 2 3 4
7 0 5 6
8 0 0 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

is a linear function of the form ax + b. Moreover, for x = 1, we know it is equal to 0 as
the first 2 rows are identical. Thus it is of the form ax − a. The rate of increase a of the
determinant as x increases is given by the cofactor

C21 = −

∣

∣

∣

∣

∣

∣

∣

2 3 4
0 5 6
0 0 3

∣

∣

∣

∣

∣

∣

∣

.

As this is a diagonal matrix, we get that C21 = −30. Thus the determinant is equal to
−30x + 30 and this is equal to 10 for x = 2

3
.

5. (5 pts.) Assume by contradiction that there exists such a 7× 7 matrix A which is both non-
singular and with the property that AT = −A. Since it is nonsingular, we have det(A) 6= 0.
Moreover, from AT = −A, we derive that det(A) = det(AT ) = det(−A) = (−1)7 det(A) =
−det(A), implying that det(A) = 0, a contradiction. (Notice that if the size was even, say
6×6, then we would not derive such a contradiction as det(AT ) = det(−A) = (−1)6 det(A) =
det(A).)
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