### 18.06, Fall 2004, Problem Set 5 Solutions

1. (10 pts.)

The (edge-node) incidence matrix of the graph is (in MATLAB output) the following $12 \times 8$ matrix:
$\mathrm{A}=$

| -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 |
| 0 | -1 | 0 | 1 | 0 | 0 | 0 | 0 |
| -1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 |
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 | -1 | 0 |
| 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |

The diagonal matrix $C$ of conductances is
>> $C=\operatorname{diag}\left(\left[\begin{array}{llllllllllll}1 & 1 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 1\end{array}\right]\right)$
C =

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

If we denote the potentials by $x$, the currents by $y$ and the current inputs by $f=(-1,0,0,0,0,0,0,1)$, we first need to solve $A^{T} C A x=f$ to get $x$ and then compute $y=C A x$. (We have used the notation and the equations developed in lecture and in the book, although, strictly speaking, current is proportional to the potential $d r o p$ and not potential increase. Answers with all the currents of the opposite sign are acceptable too.) We saw in lecture and in the book that
$A^{T} C A$ is a $n \times n$ matrix of rank $n-1(n=8$ here $)$, and that its nullspace is the line spanned by the vector of all 1's. Thus $A^{T} C A x=f$ determines only $x$ up to an additive constant. We can therefore fix any $x_{i}$ to be any value, say fix $x_{8}=0$. Letting $B=A^{T} C A$, this means that we can remove the last column of $B$ (since $x_{8}=0$ ) and also any row of $B$ (since the system has rank 7), say the last row of $B$. We can therefore get $x$ as follows:

```
>> B=A'*C*A
B =
\begin{tabular}{rrrrrrrr}
3 & -1 & -1 & 0 & 0 & 0 & -1 & 0 \\
-1 & 3 & 0 & -1 & 0 & 0 & 0 & -1 \\
-1 & 0 & 5 & -2 & -2 & 0 & 0 & 0 \\
0 & -1 & -2 & 5 & 0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 & 5 & -2 & -1 & 0 \\
0 & 0 & 0 & -2 & -2 & 5 & 0 & -1 \\
-1 & 0 & 0 & 0 & -1 & 0 & 3 & -1 \\
0 & -1 & 0 & 0 & 0 & -1 & -1 & 3
\end{tabular}
>> G=B(1:7,1:7)
G =
\begin{tabular}{rrrrrrr}
3 & -1 & -1 & 0 & 0 & 0 & -1 \\
-1 & 3 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 5 & -2 & -2 & 0 & 0 \\
0 & -1 & -2 & 5 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 & 5 & -2 & -1 \\
0 & 0 & 0 & -2 & -2 & 5 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & 3
\end{tabular}
>> inv(G)
ans =
\begin{tabular}{lllllll}
0.7143 & 0.3571 & 0.4286 & 0.3571 & 0.3571 & 0.2857 & 0.3571 \\
0.3571 & 0.5617 & 0.3052 & 0.3279 & 0.2565 & 0.2338 & 0.2045 \\
0.4286 & 0.3052 & 0.6753 & 0.4870 & 0.4870 & 0.3896 & 0.3052 \\
0.3571 & 0.3279 & 0.4870 & 0.6266 & 0.4123 & 0.4156 & 0.2565 \\
0.3571 & 0.2565 & 0.4870 & 0.4123 & 0.6266 & 0.4156 & 0.3279 \\
0.2857 & 0.2338 & 0.3896 & 0.4156 & 0.4156 & 0.5325 & 0.2338 \\
0.3571 & 0.2045 & 0.3052 & 0.2565 & 0.3279 & 0.2338 & 0.5617
\end{tabular}
>> x = inv(G)*[-1; 0; 0; 0; 0; 0; 0]
```

$$
\begin{aligned}
\mathrm{x}= & \\
& -0.7143 \\
& -0.3571 \\
& -0.4286 \\
& -0.3571 \\
& -0.3571 \\
& -0.2857 \\
& -0.3571
\end{aligned}
$$

We can now get the currents $y$ from $y=C A x$ (and remembering that $x_{8}$ is 0 ):

```
y=C*A(:, 1:7)*x
y =
    0.3571
    0.2857
    0.1429
    0.0
    0.3571
    0.1429
    0.1429
    0.3571
    0.0
    0.1429
    0.2857
    0.3571
```

2. (6 pts)

In exercise 3 of problem set 3 , we argued that $C(A B) \subseteq C(A)$. This implies that $\operatorname{rank}(A B) \leq$ $\operatorname{rank}(A)$ as the dimension of the column space of a matrix is equal to its rank.
Taking transposes, the statement $C(P Q) \subseteq C(P)$ also implies that $R\left(Q^{T} P^{T}\right) \subseteq R\left(P^{T}\right)$. Letting $A=Q^{T}$ and $B=P^{T}$, we get $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
3. (16 pts.)
(a) We can simply take the $n$ unit vectors along the coordinate axes; these are $n$ vectors with all components equal to 0 , except one component equal to 1 .
(b) i. Entry $(i, j)$ of the matrix $R$ is the dot product of $q_{i}$ and $q_{j}$, where $q_{i}$ denotes the $i$ th column of $Q$. As all the pair-wise distances are 1 , we have that, for $i \neq j$, $1=\left\|q_{i}-q_{j}\right\|^{2}=\left\|q_{i}\right\|^{2}+\left\|q_{j}\right\|^{2}-2 q_{i} \cdot q_{j}=2-2 q_{i} \cdot q_{j}$, implying that $q_{i} \cdot q_{j}=\frac{1}{2}$. Thus, we must have

$$
R_{i j}= \begin{cases}1 & \text { for } i=j \\ 1 / 2 & \text { for } i \neq j\end{cases}
$$

For $p=5$ for exeample, $R$ would be the following $4 \times 4$ matrix:

$$
R=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1
\end{array}\right]
$$

ii. $R$ has full rank, i.e. $\operatorname{rank}(R)=p-1$. This can be shown in many ways. One could "guess" that the inverse of $R$ is of the form:

$$
R_{i j}^{-1}= \begin{cases}a & \text { for } i=j \\ b & \text { for } i \neq j\end{cases}
$$

Then, for this matrix to be the inverse of $R$, we would need to be able to find $a$ and $b$ such that (just using the fact that $R R^{-1}=I$ ):

$$
\left\{\begin{array}{l}
a+\frac{p-2}{2} b=1 \\
\frac{a}{2}+\frac{p-1}{2} b=0
\end{array}\right.
$$

which has $a=\frac{2(p-1)}{p}$ and $b=-\frac{2}{p}$ as solution. Thus $R$ has an inverse and is of full rank. For example, for $p=5, R^{-1}$ is given by:

$$
R^{-1}=\left[\begin{array}{cccc}
1.6 & -0.4 & -0.4 & -0.4 \\
-0.4 & 1.6 & -0.4 & -0.4 \\
-0.4 & -0.4 & 1.6 & -0.4 \\
-0.4 & -0.4 & -0.4 & 1.6
\end{array}\right]
$$

Another way to show that $R$ has full rank is to show that the only vector in $N(R)$ is the 0 vector. Indeed if $R x=0$ we have that $\frac{x_{j}}{2}+\frac{1}{2} \sum_{i=1}^{p-1} x_{i}=0$ for all $j=1, \cdots, p-1$, which implies that $x_{1}=x_{2}=\cdots=x_{p-1}$ which in turn implies that all the $x_{i}$ 's are 0 . Thus $\operatorname{dim}(N(R))=0$ and $R$ has full rank.
iii. Since $R=Q^{T} Q$ we know by the previous exercise that $\operatorname{rank}(R) \leq \operatorname{rank}(Q)$. But $\operatorname{rank}(R)=p-1$ (by the previous subquestion) and $\operatorname{rank}(Q)=n$ as the columns of $Q$ span $R^{n}$. Thus we have $p-1 \leq n$ or $p \leq n+1$.
4. (8 pts.)

Here is some possible Matlab code to do the exercise:

```
for I=1:50,
A=randn (50, 30);
P}=\textrm{A}*\operatorname{inv}(\mp@subsup{\textrm{A}}{}{\prime}*\textrm{A})*\mp@subsup{\textrm{A}}{}{\prime}
W=P;
rank(W);
Q=W'*W;
d=diag(Q);
e=sqrt (d*ones (1,50) +ones ( 50, 1)*d'-2*Q);
ma=max(max (e));
```

```
mi=min(min(e+ma*eye(50)));
C(I)=ma/mi;
end
>> min(C)
ans =
    1.5903
```

By repeating many times, one could get below 1.5 but any answer below 1.75 is valid.

