18.06, Fall 2004, Problem Set 4 Solutions

1. (13 pts.)
(a)

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 2 & -2 & 1 & 2 \\
3 & 6 & 0 & 9 & 0 & 3 \\
1 & 2 & 0 & 3 & 1 & 3 \\
-1 & -2 & 2 & -5 & 0 & -1
\end{array}\right]
$$

Permuting rows 1 and 2, we get:

$$
\left[\begin{array}{cccccc}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
1 & 2 & 0 & 3 & 1 & 3 \\
-1 & -2 & 2 & -5 & 0 & -1
\end{array}\right]
$$

Now we can eliminate entries $(3,1)$ and $(4,1)$ to get:

$$
\left[\begin{array}{cccccc}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 2 & -2 & 0 & 0
\end{array}\right] .
$$

The second pivot is now element $(2,3)$, and this pivot can be used to eliminate element $(4,3)$:

$$
\left[\begin{array}{cccccc}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & -1 & -2
\end{array}\right] .
$$

The next pivot is element $(3,5)$, and it allows to eliminate element $(4,5)$:

$$
\left[\begin{array}{cccccc}
3 & 6 & 0 & 9 & 0 & 3 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The matrix now is in echelon form. To get the reduced row echelon form, we first scale row 1 by $1 / 3$ and row 2 by $1 / 2$:

$$
\left[\begin{array}{cccccc}
1 & 2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

We still need to eliminate entry $(2,5)$ (as x_{5} is a pivot variable) and this is done by subtracting $1 / 2$ of row 3 from row 2 :

$$
R=\left[\begin{array}{cccccc}
1 & 2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and this is the reduced row echelon form.
(b) The rank of A is 3 since we found 3 pivot variables: x_{1}, x_{3} and x_{5}.
(c) If we take $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ and we redo the eliminations on the augmented matrix $[A \mid b]$, we get that $A x=b$ is equivalent to $E x=d$ where $d=\left[\begin{array}{c}b_{2} / 3 \\ b_{1} / 2-b_{3} / 2+b_{2} / 6 \\ b_{3}-b_{2} / 3 \\ b_{4}-b_{1}+b_{3}\end{array}\right]$. If we take b such that $b_{4}-b_{1}+b_{3} \neq 0$ then $A x=b$ has no solution.
(d) When doing the elimination with $b=\left[\begin{array}{c}22 \\ 24 \\ 16 \\ 6\end{array}\right]$, we get (see previous subquestion) $d=$ $\left[\begin{array}{l}8 \\ 7 \\ 8 \\ 0\end{array}\right]$. Thus a particular solution is

$$
x_{p}=\left[\begin{array}{l}
8 \\
0 \\
7 \\
0 \\
8 \\
0
\end{array}\right] .
$$

To get all solutions, we need to add linear combinations of the special solutions of the nullspace. We have a special solution for each free variable x_{2}, x_{4} and x_{6}. All solutions to $A x=b$ are thus given by:

$$
\left[\begin{array}{l}
8 \\
0 \\
7 \\
0 \\
8 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]=+\left[\begin{array}{c}
8-2 x_{2}-3 x_{4}-x_{6} \\
x_{2} \\
7+x_{4} \\
x_{4} \\
8-2 x_{6} \\
x_{6}
\end{array}\right] .
$$

(e) No, since the nullspace contains non-zero vectors.

$$
A^{T} A=\left[\begin{array}{cccccc}
11 & 22 & -2 & 35 & 1 & 13 \tag{f}\\
22 & 44 & -4 & 70 & 2 & 26 \\
-2 & -4 & 8 & -14 & 2 & 2 \\
35 & 70 & -14 & 119 & 1 & 37 \\
1 & 2 & 2 & 1 & 2 & 5 \\
13 & 26 & 2 & 37 & 5 & 23
\end{array}\right]
$$

(g) The rank of $A^{T} A$ is also 3 . Indeed let us prove that the rank of $A^{T} A$ is always equal to the rank of A (without doing any eliminations).
To see this, we first show that $N(A)=N\left(A^{T} A\right)$. It is clear that any x with $A x=0$ satisfies $A^{T} A x=0$. The converse is also true: If $A^{T} A x=0$, observe that for $w=A x$ we have that $w \in N\left(A^{T}\right)$ and $w=C(A)$ which implies that $w=0$ as $N\left(A^{T}\right) \cap C(A)=\{0\}$. In other words $A^{T} A x=0$ implies that $A x=0$. The fact that $N(A)=N\left(A^{T} A\right)$ now implies that the dimensions of these subspaces are the same and thus we have $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$.
2. (6 pts.) Consider the space F spanned by the 4 vectors $v_{1}=(4,2,4,2), v_{2}=(-1,4,5,10)$, $v_{3}=(-5,2,1,8)$ and $v_{4}=(6,6,10,10)$.
(a) The v_{i} 's are not linearly independent. Indeed, if you consider the matrix

$$
A=\left[\begin{array}{cccc}
4 & -1 & -5 & 6 \\
2 & 4 & 2 & 6 \\
4 & 5 & 1 & 10 \\
2 & 10 & 8 & 10
\end{array}\right]
$$

and do eliminations, we'll get only two pivots. The matrix A would need to have a nullspace of dimension 0 for the vectors to be linearly independent.
(b) v_{1} and v_{2} forms a basis of F. Any two of the v_{i} 's would work here as none of them is a multiple of another.
(c) The dimension of F is 2 as we have two pivots.
(d) $v_{1}+2 v_{2}+3 v_{3}, v_{1}-v_{2}$ and v_{4} cannot be linearly independent since 3 vectors of a subspace of dimension 2 are never linearly independent.
3. (5 pts .) Consider the subspace F of all 3×3 symmetric matrices with zeroes on the diagonal.
(a) Consider the 3 matrices:

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

A linear combination of these matrices gives the matrix:

$$
\left[\begin{array}{lll}
0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}\right] .
$$

To get the 0 matrix, we must have $a=b=c=0$ implying that the 3 matrices are linearly independent. Furthermore we can get any symmetric matrix with zeroes on the diagonal by choosing a, b and c appropriately, and thus these 3 vectors span the subspace. Hence they form a basis.
(b) We'll need $1+2+\cdots+n-1$ matrices in the basis, for a total of $\frac{n(n-1)}{2}$.
4. (4 pts.) Suppose we couldn't find an index l. This means that $v_{1}, v_{2}, \cdots, v_{k-1}, v_{k}, v_{l}$ are linearly dependent for every $l=k+1, \cdots, n$. Since v_{1}, \cdots, v_{k} are linearly independent, it means that v_{l} linearly depends on v_{1}, \cdots, v_{k} for $l>k$. This implies that any vector which is a linear combination of all the v_{i} 's can be expressed as a linear combination of just v_{1}, \cdots, v_{k}. In other words, v_{1}, \cdots, v_{k} form a basis of $C(A)$ and this contradicts the fact that the rank (and thus the dimension of $C(A)$) is greater than k.
5. (12 pts.) Exercise 14 of section 3.6 on page 181. $A=B C$ where B is invertible (since it is lower triangular with nonzeroes on the diagonal).

- $N(A)$. The nullspace $N(A)$ is equal to $N(C)$ (since B is invertible: $B C x=0$ if and only if $C x=0$). As C is in echelon form and x_{4} is a free variable, we can just take that special solution as the only vector in the basis of $N(C)=N(A)$:

$$
\left[\begin{array}{c}
0 \\
1 \\
-2 \\
1
\end{array}\right] .
$$

- $R(A)$. Similarly $R(A)=R(C)$ (from $y=A^{T} u=C^{T} B^{T} u=C^{T}\left(B^{T} u\right)$ and B^{T} being invertible). We can just take all 3 row vectors of C as basis:

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right] .
$$

Thus the rank of A is 3 .

- $C(A)$. As the rank of A and thus the dimension of $C(A)$ is 3 , we have that $C(A)$ is all of R^{3}. Thus we can take any basis of R^{3}, say the 3 unit vectors.
- $N\left(A^{T}\right)$. As $\operatorname{dim}(C(A))+\operatorname{dim}\left(N\left(A^{T}\right)\right)=3$, we have that $\operatorname{dim}\left(N\left(A^{T}\right)\right)=0$ and thus a basis of $N\left(A^{T}\right)$ contains 0 vectors (not the 0 vector).

