1. (13 pts.)

(a)

$$A = \begin{bmatrix} 0 & 0 & 2 & -2 & 1 & 2 \\ 3 & 6 & 0 & 9 & 0 & 3 \\ 1 & 2 & 0 & 3 & 1 & 3 \\ -1 & -2 & 2 & -5 & 0 & -1 \end{bmatrix}.$$

Permuting rows 1 and 2, we get:

Γ	3	6	0	9	0	3	
	0	0	2	-2	1	2	
	1	2	0	3	1	3	.
L	-1		2	-5	0	-1	

Now we can eliminate entries (3, 1) and (4, 1) to get:

3	6	0	9	0	3]
0	0	2	-2	1	2	
0	0	0	0	1	2	•
0	0	2	$9 \\ -2 \\ 0 \\ -2$	0	0	

The second pivot is now element (2,3), and this pivot can be used to eliminate element (4,3):

3	6	0	9	0	3	
0	0	2	$9 \\ -2$	1	2	
0	0	0 0	0	1	2	•
0	0	0	0	-1	-2	

The next pivot is element (3, 5), and it allows to eliminate element (4, 5):

Γ	3	6	0	9	0	3]
	0	0	2	-2	1	2	
	0	0	0	0	1	2	•
	0	0	0	$9 \\ -2 \\ 0 \\ 0$	0	0	

The matrix now is in echelon form. To get the reduced row echelon form, we first scale row 1 by 1/3 and row 2 by 1/2:

Γ	1	2	0	3	0	1	
	0	0	1	-1	1/2	1	
	0	0	0	0	1	2	•
L	0	0	0	0	$\begin{array}{c} 0 \\ 1/2 \\ 1 \\ 0 \end{array}$	0	

We still need to eliminate entry (2,5) (as x_5 is a pivot variable) and this is done by subtracting 1/2 of row 3 from row 2:

$$R = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

and this is the reduced row echelon form.

- (b) The rank of A is 3 since we found 3 pivot variables: x_1, x_3 and x_5 .
- (c) If we take $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ and we redo the eliminations on the augmented matrix [A|b], we

get that Ax = b is equivalent to Ex = d where $d = \begin{bmatrix} b_2/3 \\ b_1/2 - b_3/2 + b_2/6 \\ b_3 - b_2/3 \\ b_4 - b_1 + b_3 \neq 0$ then Ax = b has no solution. $\begin{bmatrix} 22 \end{bmatrix}$

(d) When doing the elimination with
$$b = \begin{bmatrix} 22\\ 24\\ 16\\ 6 \end{bmatrix}$$
, we get (see previous subquestion) $d =$

 $\begin{bmatrix} 0\\7\\8\\0 \end{bmatrix}$. Thus a particular solution is

$$x_p = \begin{bmatrix} 8\\0\\7\\0\\8\\0 \end{bmatrix}.$$

To get all solutions, we need to add linear combinations of the special solutions of the nullspace. We have a special solution for each free variable x_2 , x_4 and x_6 . All solutions to Ax = b are thus given by:

$$\begin{bmatrix} 8\\0\\7\\0\\8\\0 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0\\0\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -3\\0\\1\\1\\1\\0\\0\\0 \end{bmatrix} + x_6 \begin{bmatrix} -1\\0\\0\\0\\-2\\1 \end{bmatrix} = + \begin{bmatrix} 8 - 2x_2 - 3x_4 - x_6\\x_2\\7 + x_4\\x_4\\8 - 2x_6\\x_6 \end{bmatrix}$$

(e) No, since the nullspace contains non-zero vectors.

(f)

$$A^{T}A = \begin{bmatrix} 11 & 22 & -2 & 35 & 1 & 13 \\ 22 & 44 & -4 & 70 & 2 & 26 \\ -2 & -4 & 8 & -14 & 2 & 2 \\ 35 & 70 & -14 & 119 & 1 & 37 \\ 1 & 2 & 2 & 1 & 2 & 5 \\ 13 & 26 & 2 & 37 & 5 & 23 \end{bmatrix}.$$

- (g) The rank of $A^T A$ is also 3. Indeed let us prove that the rank of $A^T A$ is always equal to the rank of A (without doing any eliminations). To see this, we first show that $N(A) = N(A^T A)$. It is clear that any x with Ax = 0satisfies $A^T A x = 0$. The converse is also true: If $A^T A x = 0$, observe that for w = Ax we have that $w \in N(A^T)$ and w = C(A) which implies that w = 0 as $N(A^T) \cap C(A) = \{0\}$. In other words $A^T A x = 0$ implies that Ax = 0. The fact that $N(A) = N(A^T A)$ now implies that the dimensions of these subspaces are the same and thus we have
- 2. (6 pts.) Consider the space F spanned by the 4 vectors $v_1 = (4, 2, 4, 2), v_2 = (-1, 4, 5, 10), v_3 = (-5, 2, 1, 8)$ and $v_4 = (6, 6, 10, 10).$
 - (a) The v_i 's are not linearly independent. Indeed, if you consider the matrix

$$A = \begin{bmatrix} 4 & -1 & -5 & 6\\ 2 & 4 & 2 & 6\\ 4 & 5 & 1 & 10\\ 2 & 10 & 8 & 10 \end{bmatrix},$$

and do eliminations, we'll get only two pivots. The matrix A would need to have a nullspace of dimension 0 for the vectors to be linearly independent.

- (b) v_1 and v_2 forms a basis of F. Any two of the v_i 's would work here as none of them is a multiple of another.
- (c) The dimension of F is 2 as we have two pivots.
- (d) $v_1 + 2v_2 + 3v_3$, $v_1 v_2$ and v_4 cannot be linearly independent since 3 vectors of a subspace of dimension 2 are never linearly independent.
- 3. (5 pts.) Consider the subspace F of all 3×3 symmetric matrices with zeroes on the diagonal.
 - (a) Consider the 3 matrices:

 $rank(A) = rank(A^T A).$

$$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right], \left[\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right].$$

A linear combination of these matrices gives the matrix:

$$\left[\begin{array}{rrrr} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{array}\right].$$

To get the 0 matrix, we must have a = b = c = 0 implying that the 3 matrices are linearly independent. Furthermore we can get any symmetric matrix with zeroes on the diagonal by choosing a, b and c appropriately, and thus these 3 vectors span the subspace. Hence they form a basis.

(b) We'll need $1 + 2 + \dots + n - 1$ matrices in the basis, for a total of $\frac{n(n-1)}{2}$.

- 4. (4 pts.) Suppose we couldn't find an index l. This means that $v_1, v_2, \dots, v_{k-1}, v_k, v_l$ are linearly dependent for every $l = k + 1, \dots, n$. Since v_1, \dots, v_k are linearly independent, it means that v_l linearly depends on v_1, \dots, v_k for l > k. This implies that any vector which is a linear combination of all the v_i 's can be expressed as a linear combination of just v_1, \dots, v_k . In other words, v_1, \dots, v_k form a basis of C(A) and this contradicts the fact that the rank (and thus the dimension of C(A)) is greater than k.
- 5. (12 pts.) Exercise 14 of section 3.6 on page 181. A = BC where B is invertible (since it is lower triangular with nonzeroes on the diagonal).
 - N(A). The nullspace N(A) is equal to N(C) (since B is invertible: BCx = 0 if and only if Cx = 0). As C is in echelon form and x_4 is a free variable, we can just take that special solution as the only vector in the basis of N(C) = N(A):

$$\left[\begin{array}{c} 0\\ 1\\ -2\\ 1 \end{array}\right].$$

• R(A). Similarly R(A) = R(C) (from $y = A^T u = C^T B^T u = C^T (B^T u)$ and B^T being invertible). We can just take all 3 row vectors of C as basis:

[1]		$\begin{bmatrix} 0 \end{bmatrix}$		0	
2		1		0	
3	,	2	,	1	•
4		3		2	

Thus the rank of A is 3.

- C(A). As the rank of A and thus the dimension of C(A) is 3, we have that C(A) is all of R^3 . Thus we can take any basis of R^3 , say the 3 unit vectors.
- $N(A^T)$. As $dim(C(A)) + dim(N(A^T)) = 3$, we have that $dim(N(A^T)) = 0$ and thus a basis of $N(A^T)$ contains 0 vectors (not the 0 vector).