
18.06, Fall 2004, Problem Set 4 Solutions

1. (13 pts.)

(a)

A =











0 0 2 −2 1 2
3 6 0 9 0 3
1 2 0 3 1 3
−1 −2 2 −5 0 −1











.

Permuting rows 1 and 2, we get:










3 6 0 9 0 3
0 0 2 −2 1 2
1 2 0 3 1 3
−1 −2 2 −5 0 −1











.

Now we can eliminate entries (3, 1) and (4, 1) to get:










3 6 0 9 0 3
0 0 2 −2 1 2
0 0 0 0 1 2
0 0 2 −2 0 0











.

The second pivot is now element (2, 3), and this pivot can be used to eliminate element
(4, 3):











3 6 0 9 0 3
0 0 2 −2 1 2
0 0 0 0 1 2
0 0 0 0 −1 −2











.

The next pivot is element (3, 5), and it allows to eliminate element (4, 5):










3 6 0 9 0 3
0 0 2 −2 1 2
0 0 0 0 1 2
0 0 0 0 0 0











.

The matrix now is in echelon form. To get the reduced row echelon form, we first scale
row 1 by 1/3 and row 2 by 1/2:











1 2 0 3 0 1
0 0 1 −1 1/2 1
0 0 0 0 1 2
0 0 0 0 0 0











.

We still need to eliminate entry (2, 5) (as x5 is a pivot variable) and this is done by
subtracting 1/2 of row 3 from row 2:

R =











1 2 0 3 0 1
0 0 1 −1 0 0
0 0 0 0 1 2
0 0 0 0 0 0











,
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and this is the reduced row echelon form.

(b) The rank of A is 3 since we found 3 pivot variables: x1, x3 and x5.

(c) If we take b =











b1

b2

b3

b4











and we redo the eliminations on the augmented matrix [A|b], we

get that Ax = b is equivalent to Ex = d where d =











b2/3
b1/2 − b3/2 + b2/6

b3 − b2/3
b4 − b1 + b3











. If we take

b such that b4 − b1 + b3 6= 0 then Ax = b has no solution.

(d) When doing the elimination with b =











22
24
16
6











, we get (see previous subquestion) d =











8
7
8
0











. Thus a particular solution is

xp =



















8
0
7
0
8
0



















.

To get all solutions, we need to add linear combinations of the special solutions of the
nullspace. We have a special solution for each free variable x2, x4 and x6. All solutions
to Ax = b are thus given by:



















8
0
7
0
8
0



















+ x2



















−2
1
0
0
0
0



















+ x4



















−3
0
1
1
0
0



















+ x6



















−1
0
0
0
−2
1



















= +



















8 − 2x2 − 3x4 − x6

x2

7 + x4

x4

8 − 2x6

x6



















.

(e) No, since the nullspace contains non-zero vectors.

(f)

AT A =



















11 22 −2 35 1 13
22 44 −4 70 2 26
−2 −4 8 −14 2 2
35 70 −14 119 1 37
1 2 2 1 2 5
13 26 2 37 5 23



















.
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(g) The rank of AT A is also 3. Indeed let us prove that the rank of AT A is always equal to
the rank of A (without doing any eliminations).

To see this, we first show that N(A) = N(AT A). It is clear that any x with Ax = 0
satisfies AT Ax = 0. The converse is also true: If AT Ax = 0, observe that for w = Ax we
have that w ∈ N(AT ) and w = C(A) which implies that w = 0 as N(AT )∩C(A) = {0}.
In other words AT Ax = 0 implies that Ax = 0. The fact that N(A) = N(AT A)
now implies that the dimensions of these subspaces are the same and thus we have
rank(A) = rank(AT A).

2. (6 pts.) Consider the space F spanned by the 4 vectors v1 = (4, 2, 4, 2), v2 = (−1, 4, 5, 10),
v3 = (−5, 2, 1, 8) and v4 = (6, 6, 10, 10).

(a) The vi’s are not linearly independent. Indeed, if you consider the matrix

A =











4 −1 −5 6
2 4 2 6
4 5 1 10
2 10 8 10











,

and do eliminations, we’ll get only two pivots. The matrix A would need to have a
nullspace of dimension 0 for the vectors to be linearly independent.

(b) v1 and v2 forms a basis of F . Any two of the vi’s would work here as none of them is a
multiple of another.

(c) The dimension of F is 2 as we have two pivots.

(d) v1+2v2+3v3, v1−v2 and v4 cannot be linearly independent since 3 vectors of a subspace
of dimension 2 are never linearly independent.

3. (5 pts.) Consider the subspace F of all 3×3 symmetric matrices with zeroes on the diagonal.

(a) Consider the 3 matrices:







0 1 0
1 0 0
0 0 0






,







0 0 1
0 0 0
1 0 0






,







0 0 0
0 0 1
0 1 0






.

A linear combination of these matrices gives the matrix:







0 a b
a 0 c
b c 0






.

To get the 0 matrix, we must have a = b = c = 0 implying that the 3 matrices are
linearly independent. Furthermore we can get any symmetric matrix with zeroes on
the diagonal by choosing a, b and c appropriately, and thus these 3 vectors span the
subspace. Hence they form a basis.

(b) We’ll need 1 + 2 + · · · + n − 1 matrices in the basis, for a total of n(n−1)
2 .
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4. (4 pts.) Suppose we couldn’t find an index l. This means that v1, v2, · · · , vk−1, vk, vl are
linearly dependent for every l = k + 1, · · · , n. Since v1, · · · , vk are linearly independent, it
means that vl linearly depends on v1, · · · , vk for l > k. This implies that any vector which is
a linear combination of all the vi’s can be expressed as a linear combination of just v1, · · · , vk.
In other words, v1, · · · , vk form a basis of C(A) and this contradicts the fact that the rank
(and thus the dimension of C(A)) is greater than k.

5. (12 pts.) Exercise 14 of section 3.6 on page 181. A = BC where B is invertible (since it is
lower triangular with nonzeroes on the diagonal).

• N(A). The nullspace N(A) is equal to N(C) (since B is invertible: BCx = 0 if and
only if Cx = 0). As C is in echelon form and x4 is a free variable, we can just take that
special solution as the only vector in the basis of N(C) = N(A):











0
1
−2
1











.

• R(A). Similarly R(A) = R(C) (from y = AT u = CT BTu = CT (BT u) and BT being
invertible). We can just take all 3 row vectors of C as basis:











1
2
3
4











,











0
1
2
3











,











0
0
1
2











.

Thus the rank of A is 3.

• C(A). As the rank of A and thus the dimension of C(A) is 3, we have that C(A) is all
of R3. Thus we can take any basis of R3, say the 3 unit vectors.

• N(AT ). As dim(C(A)) + dim(N(AT )) = 3, we have that dim(N(AT )) = 0 and thus a
basis of N(AT ) contains 0 vectors (not the 0 vector).
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