18.06, Fall 2004, Problem Set 3 Solutions

1. (6 pts .)
(a) No. The set F is not closed under scalar multiplication. For example, $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is in F but $-1\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]$ is not.
(b) No. For a counter-example, consider $f(x)=x^{2}+x$; then f is in our set but $2 f=2 x^{2}+2 x$ is not.
(c) Yes. Note that the "vectors" of this space are 4×2 matrices. If N_{1} and N_{2} are matrices in F, and c is any scalar, then

$$
M\left(N_{1}+N_{2}\right)=M N_{1}+M N_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
M\left(c N_{1}\right)=c M N_{1}=c\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],
$$

so $N_{1}+N_{2}$ and $c N_{1}$ are also in F.
2. This question is not being graded. The notion of rotation was a bit ambiguous. If you consider a rotation by 0 to be the same as a rotation by 2π then this is not a vector space. Indeed, you would have for example two vectors, rotation by 0 and by π, such that if you multiply them by 2 you get the same vector.
3. (8 pts .) Each column of A is a linear combination of the columns of P, with coefficients from the correspoding column of Q :

$$
A_{i}=\sum_{k=1}^{p} Q_{k, i} P_{k}
$$

where A_{i} denotes the i th column of A, similarly for P_{k}, and as usual $Q_{k, i}$ denotes the entry of Q in row k and column i. Now if v is a vector in $C(A)$, it can be written as a linear combination of the columns of A; say

$$
v=\sum_{i=1}^{n} c_{i} A_{i}
$$

for some scalars c_{i}. Substituting, we get

$$
v=\sum_{i=1}^{n} c_{i}\left(\sum_{k=1}^{p} Q_{k, i} P_{k}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{k=1}^{p} c_{i} Q_{k, i} P_{k} \\
& =\sum_{k=1}^{p}\left(\sum_{i=1}^{n} c_{i} Q_{k, i}\right) P_{k}
\end{aligned}
$$

The point is, we now have v written as a linear combination of the columns of P. Therefore, we have shown that if v is in $C(A)$, then v is in $C(P)$, and so $C(A) \subseteq C(P)$.
It need not be the case that $C(A)=C(P)$, though. Consider for example

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Clearly $C(A) \neq C(P)$ in this case.
4. (18 pts.)
(a) Perform elimination on the first column with

$$
E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } E_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-5 & 0 & 0 & 1
\end{array}\right]
$$

to get

$$
\left[\begin{array}{ccccc}
1 & 2 & -2 & 3 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] .
$$

Now perform elimination on the third column using

$$
E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

to get

$$
\left[\begin{array}{ccccc}
1 & 2 & -2 & 3 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(b) The pivot variables are x_{1}, x_{3} and x_{5}. The free variables are x_{2} and x_{4}.
(c) All that is required to get to reduced row echelon form is to add 2 times row 2 to row 1 (with $E_{12}=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$) and divide row 3 by -2 (with $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$) to get

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 5 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(d) The first special solution is obtained by setting $x_{2}=1$ and $x_{4}=0$, from which we get $\mathbf{x}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$. Setting $x_{2}=0$ and $x_{4}=1$ we get the other special solution, $\mathbf{x}=\left[\begin{array}{c}-5 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]$.
(e) 3: there are 3 pivots.
(f) Note that, as long as the pivot rows and columns are included in a submatrix, row reduction on that submatrix will proceed exactly as it did for the full matrix. In particular, if we take only the rows and columns of A containing pivots, the resulting submatrix will have the $r \times r$ identity matrix as its reduced row echelon form. Therefore, this submatrix of A will be invertible. In our particular case, we get the submatrix

$$
\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -3 & 0 \\
3 & -5 & -2
\end{array}\right] .
$$

5. (8pts.) The important realisation to make for this problem is that A is the product of your MIT ID as a column vector with your MIT ID as a row vector:

$$
A=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7} \\
a_{8} \\
a_{9}
\end{array}\right]\left[\begin{array}{lllllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9}
\end{array}\right]
$$

For a start, it makes the MATLAB code very simple!
(a) As for problem set 1, we'll give the computation for MIT ID 987654321.

```
>> a=[9;8;7;6;5;4;3;2;1]
```

```
a =
```

9
8
7
6
5
4
3
2
1
>> $A=a * a$,
$\mathrm{A}=$

81	72	63	54	45	36	27	18	9
72	64	56	48	40	32	24	16	8
63	56	49	42	35	28	21	14	7
54	48	42	36	30	24	18	12	6
45	40	35	30	25	20	15	10	5
36	32	28	24	20	16	12	8	4
27	24	21	18	15	12	9	6	3
18	16	14	12	10	8	6	4	2
9	8	7	6	5	4	3	2	1

$\gg B=A+A^{\wedge} 2+A^{\wedge} 3$
B =

Columns 1 through 5

6602391	5868792	5135193	4401594	3667995
5868792	5216704	4564616	3912528	3260440
5135193	4564616	3994039	3423462	2852885
4401594	3912528	3423462	2934396	2445330
3667995	3260440	2852885	2445330	2037775
2934396	2608352	2282308	1956264	1630220
2200797	1956264	1711731	1467198	1222665
1467198	1304176	1141154	978132	815110
733599	652088	570577	489066	407555

Columns 6 through 9

```
\begin{tabular}{rrrr}
2934396 & 2200797 & 1467198 & 733599 \\
2608352 & 1956264 & 1304176 & 652088 \\
2282308 & 1711731 & 1141154 & 570577 \\
1956264 & 1467198 & 978132 & 489066 \\
1630220 & 1222665 & 815110 & 407555 \\
1304176 & 978132 & 652088 & 326044 \\
978132 & 733599 & 489066 & 244533 \\
652088 & 489066 & 326044 & 163022 \\
326044 & 244533 & 163022 & 81511
\end{tabular}
```

```
>> rank(B)
```

ans =

1
(b) With the expression for A above, we can calculate B more explicitly. As in the MATLAB computation above, let us denote by a the column vector with entries the digits of your MIT ID. Then

$$
\begin{aligned}
B & =A+A^{2}+A^{3} \\
& =\mathbf{a a}^{T}+\mathbf{\mathbf { a } ^ { T }} \mathbf{a a}^{T}+\mathbf{\mathbf { a } ^ { T }} \mathbf{a a}^{T} \mathbf{a a}^{T} \\
& =\mathbf{a a}^{T}+\mathbf{a}\|\mathbf{a}\|^{2} \mathbf{a}^{T}+\mathbf{a}\|\mathbf{a}\|^{4} \mathbf{a}^{T} \\
& =\left(1+\|\mathbf{a}\|^{2}+\|\mathbf{a}\|^{4}\right) \mathbf{a} \mathbf{a}^{T}
\end{aligned}
$$

Since the expression in parentheses is a scalar, the rank of B equals the rank of $\mathbf{a a}^{T}$. Now, each column of $\mathbf{a a}^{T}$ is just a multiple of \mathbf{a}, so the rank of $\mathbf{a a ^ { T }}$, and therefore B, is 1 (unless you happen to have the MIT ID 000000000, in which case the rank is 0).

