18.06, Fall 2004, Problem Set 1 Solutions

1. (6 pts.)

- (a) False. Counterexample: u = (1, 0, 0), v = (0, 1, 0) and w = (0, 0, 1).
- (b) True. $u \cdot (v + 2w) = u \cdot v + 2u \cdot w = 0 + 0 = 0.$

(c) True.
$$||u - v||^2 = (u - v) \cdot (u - v) = u \cdot u - 2u \cdot v + v \cdot v = 1 + 0 + 1 = 2$$
.

2. (6 pts.)

$$(A+B)^{2} = \begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ 6 & 6 \end{bmatrix}.$$
$$A^{2} + 2AB + B^{2} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 14 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 14 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 16 & 2 \\ 3 & 0 \end{bmatrix}.$$

The correct rule is $(A + B)^2 = A^2 + AB + BA + B^2$.

3. (6 pts.)

- (a) $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is such that $A^2 = 0$. We could have replaced the 1 by any other (nonzero) value as well.
- (b) $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ is such that $A^2 \neq 0$ and $A^3 = 0$. We could have replaced the 1's by other values as well.

4. (10 pts.) Eliminating element (2, 1) using $E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, we get: $\begin{cases} x +2y +3z = 0 \\ 3y +z = -3 \\ 2x +y +z = 3 \end{cases}$ Eliminating element (3, 1) using $E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, we get: $\begin{cases} x +2y +3z = 0 \\ 3y +z = -3 \\ -3y -5z = 3 \end{cases}$ Eliminating element (3, 2) using $E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, we get:

$$\begin{cases} x +2y +3z = 0\\ 3y +z = -3\\ -4z = 0 \end{cases}$$

After back substitution, we get z = 0, y = -1 and x = 2. Now,

$$M = E_{32}E_{31}E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}.$$

The product $E_{31}E_{21}$ was very simple to compute (the product has the second row of E_{21} and the third row of E_{31}) since adding a multiple of row 1 to row 2 and adding a multiple of row 1 to row 3 can be done independently without affecting the result.

- 5. (6 pts.)
 - E_{21} and E_{31} commute $(E_{21}E_{31} = E_{31}E_{21})$ since adding a multiple of row 1 to row 2 and adding a multiple of row 1 to row 3 can be done in any order without affecting the result.
 - E_{21} and E_{32} do not commute. $E_{21}E_{32}B$ (for any matrix *B* means adding a multiple of row 2 of *B* to row 3 and then adding a multiple of row 1 to row 2. This is not the same (at least for some *B*) as first adding a multiple of row 1 to row 2 and then a multiple of row 2 (which has just changed) to row 3. Thus, $E_{21}E_{32}B \neq E_{32}E_{21}B$ for some *B* and thus $E_{21}E_{32} \neq E_{32}E_{21}$.
 - E_{31} and E_{32} commute since adding a multiple of row 1 to row 3 and a multiple of row 2 to row 3 can be done in any order without affecting the result.
- 6. (6 pts.) Independently of your MIT ID, the answer will be very close to the 3×3 matrix with all entries equal to 1/3. We will see why in section 8.3 later in the semester.

```
>> a=9; b=8; c=7; d=6; e=5; f=4; g=3; h=2; i=1;
>> A=[a+b+c e+g+h d+f+i; d+e+f a+c+i b+g+h; g+h+i b+d+f a+c+e]
A =
24 10 11
15 17 13
```

6 18 21

>> B=A/(a+b+c+d+e+f+g+h+i)

В =

0.5333	0.2222	0.2444
0.3333	0.3778	0.2889
0.1333	0.4000	0.4667

>> B^40 =

0.3333	0.3333	0.3333
0.3333	0.3333	0.3333
0.3333	0.3333	0.3333