18.06, Fall 2004, Problem Set 1 Solutions

1. (6 pts.$)$
(a) False. Counterexample: $u=(1,0,0), v=(0,1,0)$ and $w=(0,0,1)$.
(b) True. $u \cdot(v+2 w)=u \cdot v+2 u \cdot w=0+0=0$.
(c) True. $\|u-v\|^{2}=(u-v) \cdot(u-v)=u \cdot u-2 u \cdot v+v \cdot v=1+0+1=2$.
2. (6 pts .)

$$
\begin{gathered}
(A+B)^{2}=\left[\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right]=\left[\begin{array}{cc}
10 & 4 \\
6 & 6
\end{array}\right] \\
A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
14 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{cc}
16 & 2 \\
3 & 0
\end{array}\right]
\end{gathered}
$$

The correct rule is $(A+B)^{2}=A^{2}+A B+B A+B^{2}$.
3. (6 pts .)
(a) $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is such that $A^{2}=0$. We could have replaced the 1 by any other (nonzero) value as well.
(b) $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ is such that $A^{2} \neq 0$ and $A^{3}=0$. We could have replaced the 1 's by other values as well.
4. (10 pts.) Eliminating element $(2,1)$ using $E_{21}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, we get:

$$
\left\{\begin{aligned}
x+2 y+3 z & =0 \\
3 y+z & =-3 \\
2 x+y+z & =3
\end{aligned}\right.
$$

Eliminating element (3,1) using $E_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$, we get:

Eliminating element (3,2) using $E_{32}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$, we get:

$$
\left\{\begin{aligned}
& x+2 y+3 z= \\
& x+z= \\
& 3 y+3 \\
&-4 z=0
\end{aligned}\right.
$$

After back substitution, we get $z=0, y=-1$ and $x=2$.
Now,

$$
\begin{aligned}
M & =E_{32} E_{31} E_{21}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

The product $E_{31} E_{21}$ was very simple to compute (the product has the second row of E_{21} and the third row of E_{31}) since adding a multiple of row 1 to row 2 and adding a multiple of row 1 to row 3 can be done independently without affecting the result.
5. (6 pts.$)$

- E_{21} and E_{31} commute $\left(E_{21} E_{31}=E_{31} E_{21}\right)$ since adding a multiple of row 1 to row 2 and adding a multiple of row 1 to row 3 can be done in any order without affecting the result.
- E_{21} and E_{32} do not commute. $E_{21} E_{32} B$ (for any matrix B means adding a multiple of row 2 of B to row 3 and then adding a multiple of row 1 to row 2 . This is not the same (at least for some B) as first adding a multiple of row 1 to row 2 and then a multiple of row 2 (which has just changed) to row 3. Thus, $E_{21} E_{32} B \neq E_{32} E_{21} B$ for some B and thus $E_{21} E_{32} \neq E_{32} E_{21}$.
- E_{31} and E_{32} commute since adding a multiple of row 1 to row 3 and a multiple of row 2 to row 3 can be done in any order without affecting the result.

6. (6 pts .) Independently of your MIT ID, the answer will be very close to the 3×3 matrix with all entries equal to $1 / 3$. We will see why in section 8.3 later in the semester.
```
>> a=9; b=8; c=7; d=6; e=5; f=4; g=3; h=2; i=1;
>> A=[a+b+c e+g+h d+f+i; d+e+f a+c+i b+g+h; g+h+i b+d+f a+c+e]
```

$\mathrm{A}=$

24	10	11
15	17	13

```
        6 18 21
>> B=A/(a+b+c+d+e+f+g+h+i)
B =
    0.5333 0.2222 0.2444
    0.3333 0.3778 0.2889
    0.1333 0.4000 0.4667
>> B^40 =
    0.3333 0.3333 0.3333
    0.3333 0.3333 0.3333
    0.3333 0.3333 0.3333
```

