18.06, Fall 2004, Problem Set 10 Solutions

1. (13 pts.)

Consider the differential equation $\frac{d u}{d t}=A u$ where u is 2-dimensional and

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

(a) The characteristic polynomial of A is

$$
\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]=\lambda^{2}+1
$$

and therefore the eigenvalues are $\lambda_{1}=i$ and $\lambda_{2}=-i$. The eigenvectors are $v_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$ (or any complex multiple of it) and $v_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
(b) Since A has distinct eigenvalues, it is diagonalizable and we have that $A=V \Lambda V^{-1}$ where

$$
V=\left[\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right]
$$

and

$$
\Lambda=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

The inverse of V is:

$$
V^{-1}=\frac{1}{2}\left[\begin{array}{cc}
i & 1 \\
-i & 1
\end{array}\right] .
$$

(Observe that since the columns of V are orthogonal but not of unit norm, V^{-1} is almost V^{H}; we could have scaled V by $\frac{1}{\sqrt{2}}$ to make its inverse equal to its Hermitian.)
Now, as A is diagonalizable, we can compute $e^{A t}$ by $V e^{\Lambda t} V^{-1}$:

$$
\begin{aligned}
e^{A t} & =\frac{1}{2}\left[\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{-i t}
\end{array}\right]\left[\begin{array}{cc}
i & 1 \\
-i & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{-i t}
\end{array}\right]\left[\begin{array}{cc}
i & 1 \\
-i & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
-i e^{i t} & i e^{-i t} \\
e^{i t} & e^{-i t}
\end{array}\right]\left[\begin{array}{cc}
i & 1 \\
-i & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
e^{i t}+e^{-i t} & -i e^{i t}+i e^{-i t} \\
i e^{i t}-i e^{-i t} & e^{i t}+e^{-i t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right] .
\end{aligned}
$$

(c) Assuming $u(0)=\left[\begin{array}{l}9 \\ 2\end{array}\right]$ we get

$$
u(t)=e^{A t} u(0)=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
9 \\
2
\end{array}\right]=\left[\begin{array}{c}
9 \cos (t)+2 \sin (t) \\
-9 \sin (t)+2 \cos (t)
\end{array}\right] .
$$

(d) The differential equation is not stable (since the eigenvalues have their real part equal to 0 , and not strictly less than 0).
(e) It will be a circle, as $u_{1}^{2}(t)+u_{2}^{2}(t)=9^{2}+2^{2}=40$.
2. (10 pts.) Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Since A is upper triangular, the eigenvalues are just the diagonal elements (as $\operatorname{det}(A-\lambda I)$ is the product of the diagonal elements of $A-\lambda I$). Thus all eigenvalues are 0 .
(b) The nullspace of A has dimension 1 , so we have only 1 linearly independent eigenvector.
(c) To compute $e^{t A}$, we have to use the infinite series $e^{A t}=I+t A+\frac{t^{2}}{2} A^{2}+\frac{t^{3}}{6} A^{3}+\cdots$. The powers of A are:

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& A^{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& A^{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

and all powers A^{k} with $k \geq 4$ are equal to 0 . Thus,

$$
\begin{aligned}
e^{t A} & =I+t A+\frac{t^{2}}{2} A^{2}+\frac{t^{3}}{6} A^{3} \\
& =I+t\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{llll}
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]+\frac{t^{3}}{6}\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllc}
1 & t & 2 t+\frac{t^{2}}{2} & 3 t+2 t^{2}+\frac{1}{6} t^{3} \\
0 & 1 & t & 2 t+\frac{t^{2}}{2} \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

3. (13 pts.) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

(a) To compute an $L D L^{T}$ factorization of A, we need to do eliminations to transform A into an upper triangular matrix. Pivoting on $(1,1)$, we get:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -5 \\
0 & -5 & -7
\end{array}\right]
$$

Pivoting on $(2,2)$, we get:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -5 \\
0 & 0 & 18
\end{array}\right] .
$$

This is equal to $D U$, where

$$
U=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 18
\end{array}\right]
$$

Now, since A is symmetric, we know that the $L D U$ factorization will be $L D L^{T}$, and thus we have

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 5 & 1
\end{array}\right] .
$$

(b) As all the row sums are 6 , one of the eigenvalue is 6 (say λ_{1}), with corresponding eigenvector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. After scaling we get that the eigenvector is:

$$
v_{1}=\left[\begin{array}{c}
1 \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right] .
$$

To get the others, we could compute the characteristic polynomial. But let's try to compute them otherwise. The trace of A is 6 , so the sum of the other 2 eigenvalues is 0 , and we have $\lambda_{2}=-\lambda_{3}$. The product of the eigenvalues is the determinant of A, which equals to -18 (either we could compute it explicitly or remember that it is the product of the pivots after elimination (modulus a possible sign change if we have done permutations)). Thus, $\lambda_{2} \lambda_{3}=-3$ and we get $\lambda_{2}=\sqrt{3}$ and $\lambda_{3}=-\sqrt{3}$.

Let's now get an eigenvector for λ_{2}. We have:

$$
A-\lambda_{2} I=\left[\begin{array}{ccc}
1-\sqrt{3} & 2 & 3 \\
2 & 3-\sqrt{3} & 1 \\
3 & 1 & 2-\sqrt{3}
\end{array}\right] .
$$

We need to find the nullspace, so we perform eliminations. Adding the first row times(1+ $\sqrt{3}$) to the second, we get:

$$
\left[\begin{array}{ccc}
1-\sqrt{3} & 2 & 3 \\
0 & 5+\sqrt{3} & 4+3 \sqrt{3} \\
* & * & *
\end{array}\right] .
$$

We don't care about the 3rd row, as it will become 0 after further eliminations. The special solution here is

$$
\left[\begin{array}{c}
\frac{\sqrt{3}-1}{2} \\
-\frac{1+\sqrt{3}}{2} \\
1
\end{array}\right]
$$

We can scale it by $\sqrt{3}$ to get an eigenvector of unit norm:

$$
v_{2}=\left[\begin{array}{c}
\frac{1}{2}-\frac{1}{2 \sqrt{3}} \\
-\frac{1}{2 \sqrt{3}}-\frac{1}{2} \\
\frac{1}{\sqrt{3}}
\end{array}\right] .
$$

We do it similarly for λ_{3}. In fact, we can easily guess v_{3} now as it is orthogonal to both v_{1} and v_{2} (since A is symmetric). We get:

$$
v_{3}=\left[\begin{array}{c}
-\frac{1}{2 \sqrt{3}}-\frac{1}{2} \\
\frac{1}{2}-\frac{1}{2 \sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] .
$$

(c) We just have to take for Q the matrix whose columns are v_{1}, v_{2}, v_{3} and for Λ the diagonal matrix of eigenvalues.

$$
\Lambda=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & \sqrt{3} & 0 \\
0 & 0 & -\sqrt{3}
\end{array}\right]
$$

and

$$
Q=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{2}-\frac{1}{2 \sqrt{3}} & -\frac{1}{2 \sqrt{3}}-\frac{1}{2} \\
\frac{1}{\sqrt{3}} & -\frac{1}{2 \sqrt{3}}-\frac{1}{2} & \frac{1}{2}-\frac{1}{2 \sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right] .
$$

(d) In both cases we get -18 , and this is the determinant of A; the determinant of A is both the product of teh pivots and of the eigenvalues.
4. (4 pts .) Since A is symmetric then $A=t I$ is also symmetric. Furthermore, for any eigenvalue λ_{i} of A, we have that $\lambda_{i}+t$ is an eigenvalue of $A+t I$ and vice versa (since $(A+t I) v=\lambda v+t v$ for v an eigenvalue of A corresponding to λ). So, if $t>-\min _{i} \lambda_{i}$ then $A+t I$ has all its (real) eigenvalues greater than 0 , and thus is positive definite.

