Questions from 18.06 Final, Fall 2003

1. Suppose $A=L U$ where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 3 & 1
\end{array}\right], U=\left[\begin{array}{llll}
5 & 0 & 5 & 1 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) What are the dimensions of the 4 fundamental subspaces associated with A ?
(b) Give a basis for each of the 4 fundamental subspaces.
$N(A)$
$R(A)$
$C(A)$
$N\left(A^{T}\right)$
2. Let F be the subspace of R^{4} given by

$$
F=\{(x, y, z, w): x-y+2 z+3 w=0\}
$$

Let P be the projection matrix for projecting onto F. (Many of the subquestions can be answered independently of the others.)
(a) Give an orthonormal basis $\left\{v_{1}, \cdots, v_{k}\right\}$ for the orthogonal complement to F.
(b) Find an orthonormal basis $\left\{w_{1}, \cdots, w_{l}\right\}$ for F. Explain how you proceed.

The following questions refer to the projection matrix P for projecting onto F.
(c) What are the eigenvalues of P ? Give them with their multiplicities.
(d) What is the projection of $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ onto F ?
3. (a) Write down the 2×2 rotation matrix, $R(\theta)$, that rotates R^{2} in the counterclockwise direction by an angle θ (this matrix is a function of θ).
(b) Compute the eigenvalues of $R(\theta)$. For which value(s) of θ are the eigenvalues real?
(c) What are the eigenvectors of $R(\theta)$.
(d) Write down the singular value decomposition of $R(\theta)$.
4. (a) Give two 3×3 matrices A and B such that $A B$ is not equal to $B A$.
(b) Suppose A and B are $n \times n$ matrices with the same set of linearly independent eigenvectors $v_{1}, v_{2}, \cdots, v_{n}$. However, the eigenvalues might be different: v_{i} is the eigenvector for the eigenvalue λ_{i} of A and the eigenvector for the eigenvalue μ_{i} of B. Show that $A B=B A$.
5. Consider the differential equation $\left[\begin{array}{l}\frac{d u}{d t} \\ \frac{d v}{d t}\end{array}\right]=\left[\begin{array}{cc}0 & 3 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]$.
(a) Solve the differential equation and express $u(t), v(t)$ as functions of $u(0)$ and $v(0)$.
(b) Find a linear transformation $\left[\begin{array}{l}p \\ q\end{array}\right]=T\left[\begin{array}{l}u \\ v\end{array}\right]$ such that the differential equation simplifies into two independent differential equations in p and in q (one relating $\frac{d p}{d t}$ and p, the other relating $\frac{d q}{d t}$ and q)
(c) Are there initial conditions $u(0), v(0)$ that would make $u(t)$ blow up? If yes, give one such value for $u(0)$ and $v(0)$.
(d) Are there initial conditions $u(0), v(0)$ that would make $u(t)$ go to 0 ? If yes, give one such value for $u(0)$ and $u^{\prime}(0)$.
6. True of False. Circle the appropriate answer. "True" means "always true", and "false" means "sometimes false". Justify each answer briefly.
(a) The product of the pivots when performing Gauss-Jordan is equal to the determinant if we do not have to permute rows.
True or False.
(b) Let A be an $m \times n$ matrix whose columns are independent. Then $A A^{T}$ is positive definite. True or False.
(c) If A is a symmetric matrix then the singular values are the absolute values of the nonzero eigenvalues.
True or False.
(d) There exists a 5×5 unitary matrix with eigenvalues $1,1+i, 1-i, i$ and $-i$.

True or False.
(e) Suppose V and W are two vector spaces of dimension n. If T is a linear transformation from V to W with only the 0 vector in the kernel, then for any basis of V, there exists an orthonormal basis of W such that the resulting matrix representing T is upper triangular. True or False.
7. Consider the following matrix A :

$$
A=\left[\begin{array}{lll}
0.5 & 0.4 & 0.2 \\
0.4 & 0.5 & 0.2 \\
0.1 & 0.1 & 0.6
\end{array}\right]
$$

(c) Can you immediately tell one of the eigenvalues of A (without computing them)? Explain.
(d) Compute the determinant of A.
(e) Find the eigenvalues of A and the corresponding eigenvectors. (Check your answer.)
(f) Two out of the 3 eigenvectors of A should be orthogonal to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. How could you have explained this before computing the eigenvectors?
(g) Write an exact expression for A^{100}.
8. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

For each of the following matrices, either complete it (find values for the non-diagonal elements) so that it becomes similar to A, or explain why it is impossible to complete it to a matrix similar to A. Circle whether you are able to complete it or not to a matrix similar to A.
(a)

$$
B=\left[\begin{array}{ccc}
2 & \cdot & \cdot \\
\cdot & 2 & \cdot \\
\cdot & \cdot & 4
\end{array}\right]
$$

Able to complete it to similar?: Yes No
If yes, give a completion. If not, why not?
(b)

$$
C=\left[\begin{array}{ccc}
3 & . & \cdot \\
\cdot & 3 & \cdot \\
\cdot & \cdot & 3
\end{array}\right]
$$

Able to complete it to similar?: Yes No
If yes, give a completion. If not, why not?

